
Degree Project in Communication Systems

Second cycle, 30 credits

Confidential Federated Learning
with Homomorphic Encryption
Master’s Thesis Degree Project

ZEKUN WANG

Stockholm, Sweden, 2023

Confidential Federated Learning
with Homomorphic Encryption

Master’s Thesis Degree Project

ZEKUN WANG

Master’s Programme, Communication Systems, 120 credits
Date: November 21, 2023

Supervisors: Nicolae Paladi, Roberto Guanciale
Examiner: Amir H. Payberah

School of Electrical Engineering and Computer Science
Host company: CanaryBit AB
Swedish title: Konfidentiellt federat lärande med homomorf kryptering
Swedish subtitle: Examensarbete för masterexamen

© 2023 Zekun WANG

Abstract | i

Abstract
Federated Learning (FL), one variant of Machine Learning (ML) technology,
has emerged as a prevalent method for multiple parties to collaboratively train
ML models in a distributed manner with the help of a central server normally
supplied by a Cloud Service Provider (CSP). Nevertheless, many existing
vulnerabilities pose a threat to the advantages of FL and cause potential risks
to data security and privacy, such as data leakage, misuse of the central
server, or the threat of eavesdroppers illicitly seeking sensitive information.
Promisingly advanced cryptography technologies such as Homomorphic
Encryption (HE) and Confidential Computing (CC) can be utilized to enhance
the security and privacy of FL. However, the development of a framework
that seamlessly combines these technologies together to provide confidential
FL while retaining efficiency remains an ongoing challenge. In this degree
project, we develop a lightweight and user-friendly FL framework called
Heflp, which integrates HE and CC to ensure data confidentiality and integrity
throughout the entire FL lifecycle. Heflp supports four HE schemes to fit
diverse user requirements, comprising three pre-existing schemes and one
optimized scheme that we design, named Flashev2, which achieves the highest
time and spatial efficiency across most scenarios. The time and memory
overheads of all four HE schemes are also evaluated and a comparison
between the pros and cons of each other is summarized. To validate the
effectiveness, Heflp is tested on theMNIST dataset and the Threat Intelligence
dataset provided by CanaryBit, and the results demonstrate that it successfully
preserves data privacy without compromising model accuracy.

Keywords
Cloud Technology, Confidential Computing, Federated Learning, Homomor-
phic Encryption, Trusted Execution Environment

ii | Abstract

Sammanfattning | iii

Sammanfattning
Federated Learning (FL), en variant av Maskininlärning (ML)-teknologi, har
framträtt som en dominerande metod för flera parter att samarbeta om att
distribuerat träna ML-modeller med hjälp av en central server som vanligtvis
tillhandahålls av en molntjänstleverantör (CSP). Trots detta utgör många
befintliga sårbarheter ett hotmot FL:s fördelar ochmedför potentiella risker för
datasäkerhet och integritet, såsom läckage av data, missbruk av den centrala
servern eller risken för avlyssnare som olagligt söker känslig information.
Lovande avancerade kryptoteknologier som Homomorf Kryptering (HE) och
Konfidentiell Beräkning (CC) kan användas för att förbättra säkerheten och
integriteten för FL. Utvecklingen av en ramverk som sömlöst kombinerar dessa
teknologier för att erbjuda konfidentiellt FL med bibehållen effektivitet är
dock fortfarande en pågående utmaning. I detta examensarbete utvecklar vi
en lättviktig och användarvänlig FL-ramverk som kallas Heflp, som integrerar
HE och CC för att säkerställa datakonfidentialitet och integritet under hela FL-
livscykeln. Heflp stöder fyra HE-scheman för att passa olika användarbehov,
bestående av tre befintliga scheman och ett optimerat schema som vi designar,
kallat Flashev2, som uppnår högsta tids- och rumeffektivitet i de flesta
scenarier. Tids- och minneskostnaderna för alla fyra HE-scheman utvärderas
också, och en jämförelse mellan fördelar och nackdelar sammanfattas.
För att validera effektiviteten testas Heflp på MNIST-datasetet och Threat
Intelligence-datasetet som tillhandahålls av CanaryBit, och resultaten visar
att det framgångsrikt bevarar datasekretessen utan att äventyra modellens
noggrannhet.

Nyckelord
Molnteknik, Konfidentiell databehandling, Federerad inlärning, Homomorfisk
kryptering, Betrodd körningsmiljö

iv | Sammanfattning

Sammanfattning | v

Acknowledgments
I would like to express my sincere gratitude to the following individuals and
groups for their support and help throughout the completion of my degree
project.

I would like to thank my company supervisor Nicolae Paladi from
CanaryBit for your guidance, expertise, and continuous support during this
academic journey. You provided me with this valuable chance to work on such
an interesting topic and guided me on both academic writing and technical
development. Your guidance and insights have been invaluable in improving
the quality of my work. I also want to thank Prof. Paul Stankovski Wagner
from Lund University, Nicolae’s colleague, for giving me helpful advice and
inspiration in the biweekly meetings. I really appreciate the CanaryBit team
for supplying the VM instances, datasets, and other resources that are critical
for me to conduct my development and experiments.

I would also like to thank Roberto Guanciale from KTH for your valuable
insights, feedback, and encouragement, which powered me up and broadened
my vision. I extend my appreciation to Prof. Amir H. Payberah from KTH for
taking the time to evaluate and provide feedback on this degree project.

As this thesis referred to a lot of existing works and research, I would
also like to acknowledge the academic community and developers, without
whom this research would not have been possible. Thank you for inspiring me
through your work and dedication.

Finally, to my dear friends and family, your encouragement and patience
have been a constant source of my motivation. I could not have completed this
degree project without your love and understanding.

Stockholm, November 2023
Zekun WANG

vi | Sammanfattning

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Question . 3
1.3 Objectives . 4
1.4 Research Methodology . 4

1.4.1 Information Collection 4
1.4.2 Framework Developing 5
1.4.3 Framework Testing 5
1.4.4 Advanced Strategy Exploration 6
1.4.5 Report Writing . 6

1.5 Delimitations . 6
1.6 Evaluation & News Value . 6

2 Background 9
2.1 Confidential Computing . 9

2.1.1 AMD Secure Encrypted Visualization 10
2.1.2 Security Challenges of AMD SEV 11

2.2 Homomorphic Encryption 11
2.2.1 Homomorphic Encryption Algorithms 12
2.2.2 Limitations of Homomorphic Encryption 13

2.3 Federated Learning . 14
2.3.1 Federated Learning Algorithms 15
2.3.2 Secure Aggregation 17
2.3.3 Comparison of FL frameworks 18

2.4 SSL/TLS . 20
2.5 Threat Intelligence . 21

2.5.1 Threat Intelligence Sharing 22
2.6 Related Work . 23

viii | Contents

3 Methodology 29
3.1 Threat Model . 29
3.2 Framework Developing Methods 32

3.2.1 Startup . 32
3.2.2 Implementing HE . 33
3.2.3 Preliminary Tests . 33

3.3 Framework Testing . 33
3.3.1 Planned Test Settings 34
3.3.2 Evaluation Metrics 34
3.3.3 Datasets . 35

3.3.3.1 TI dataset 35
3.3.3.2 MNIST dataset 35

3.4 Prototype Deployment . 36

4 Framework Design 37
4.1 System Overview . 37
4.2 Federated Learning Process 39

4.2.1 Stage 1: Initial Setup 39
4.2.2 Stage 2: FL Training 39
4.2.3 Stage 3: Completion 41

4.3 Homomorphic Encryption Schemes 41
4.3.1 Flashe . 41
4.3.2 Flashev2 . 43
4.3.3 CKKS & BFV . 46

4.4 Quantization and Weighted Averaging 46
4.4.1 Symmetric Quantization 46
4.4.2 Primary Weighted Averaging Strategy 48
4.4.3 Improved Weighted Averaging Strategy: MWAvg . . . 49
4.4.4 Flashev2+MWAvg 50

5 Implementation 53
5.1 Heflp Submodules . 53

5.1.1 heflp.secureproto . 53
5.1.1.1 homoencrypschemes 54
5.1.1.2 quantization 55

5.1.2 heflp.training . 55
5.1.3 heflp.client . 55
5.1.4 heflp.strategy . 56
5.1.5 heflp.utils . 56

Contents | ix

5.1.6 heflp.info . 57
5.2 Heflp Usage . 57
5.3 Deployment . 58

6 Results and Evaluation 61
6.1 Security Assessment . 61
6.2 Performance Evaluation . 63

6.2.1 Error Rates of HE Schemes 63
6.2.2 Training Performance Evaluation 65

6.2.2.1 Simulation settings 65
6.2.2.2 Training Curves and Analysis 65

6.3 Efficiency Evaluation . 69
6.3.1 Evaluation Settings and Metrics 69
6.3.2 Time Efficiency Test of Uniform pattern 70
6.3.3 Time Efficiency Test of Nonuniform Pattern 72
6.3.4 Time Efficiency Test of Model Types 74
6.3.5 Memory Overhead Test 74
6.3.6 HE Efficiency Comparison 77

7 Conclusions and Future Work 79
7.1 Discussion . 79
7.2 Future Work . 80

References 81

x | Contents

List of Figures | xi

List of Figures

1.1 The General goal of this project is to enable multiple parties
to collaborate on model training in a cloud context while
retaining data privacy. Additional security mechanisms are
required to protect data integrity and avoid leaking sensitive
information. 3

2.1 FL architecture . 14
2.2 An example of threat intelligence sharing. 23

3.1 Two numerical solutions . 30

4.1 System overview . 38
4.2 Federated Training process with Homomorphic Encryption,

red marks mean that these steps are optional and only
necessary for some of the HE schemes 40

4.3 An example of Flashe. Use Flashe to calculate the sum of two
pictures securely. 42

4.4 An example of Flashev2. Use Flashev2 to calculate the sum
of two pictures securely. 44

4.5 Two numerical solutions . 48
4.6 Combine MWAvg and HE encryption together. 51

5.1 Usage of Heflp . 58

6.1 collusion of the server and client adversaries. 62
6.2 Two numerical solutions . 66
6.3 Two numerical solutions . 67

xii | List of Figures

6.4 Results of the time efficiency test when all the clients have the
same weight 1000. The time costs of encryption, decryption,
and aggregation (calculation) are recorded while the total time
cost is the sum of three, representing the total time cost of one
client. 71

6.5 Results of the time efficiency test when the weights of clients
are in range [1000, 5000]. 73

6.6 Results of the time efficiency test for three models: CNN
(50890 parameters), LSTM (220355 parameters), ResNet18
(11689512 parameters). 75

6.7 Results of the memory overhead test for three models: CNN
(50890 parameters), LSTM (220355 parameters), ResNet18
(11689512 parameters). None means the original size of the
model without using any HE scheme 76

List of Tables | xiii

List of Tables

2.1 Comparison between different FL frameworks 18

4.1 Supported homomorphic encryption schemes 41

5.1 Metadata transmitted from clients to server 56
5.2 Configurations transmitted from server to clients 57

6.1 The settings of the uniform test 64
6.2 The settings of the nonuniform test 64
6.3 Settings for the simulation of FL on MNIST or TI dataset. . . . 68

xiv | List of Tables

List of acronyms and abbreviations | xv

List of acronyms and abbreviations

AMD-SP AMD Secure Processor

BFV Brakerski-Fan-Vercauteren
BGV Brakerski-Gentry-Vaikuntanathan

CA Certificate Authority
CC Confidential Computing
CKKS Cheon-Kim-Kim-Song
CNN Convolutional Neural Network
CSP Cloud Service Provider

DHC Distributed Homomorphic Cryptosystem
DP Differential Privacy

FATE Federated AI Technology Enabler
FHE Fully Homomorphic Encryption
FL Federated Learning
FRL Federated Reinforcement Learning
FTL Federated Transfer Learning
FV Fan-Vercauteren

HE Homomorphic Encryption
Heflp Homomorphic Encryption Federated Learning FLower Plugin
HFL Horizontal Federated Learning

IBM FL IBM Federated Learning
IDB Signed Identity Block
IOC indicator of compromise

LSTM Long Short-Term Memory

MAC Message Authentication Code
MHE Multiparty Homomorphic Encryption
ML Machine Learning
MPC Multi-Party Computation
MSE Mean Squared Error

xvi | List of acronyms and abbreviations

OpenFL Open Federated Learning

PHE Partially Homomorphic Encryption
PPFL Privacy-Preserving Federated Learning
PRF Pseudorandom Function

REE Rich Execution Environment
RMP Reverse Map Table

SA Secure Aggregation
SEV Secure Encrypted Visualization
SEV-ES SEV Encrypted State
SEV-SNP SEV Secure Nested Paging
SGD Stochastic Gradient Descent
SME Secure Memory Encryption
SS Secure Sharing
SSL Secure Sockets Layer
SWHE Somewhat Homomorphic Encryption

TEE Trusted Execution Environment
TFF TensorFlow-Federated
TI Threat Intelligence
TLS Transport Layer Security

VCEK Versioned Chip Endorsement Key
VFL Vertical Federated Learning
VM Virtual Machine

ZKP Zero-Knowledge Proofs

Introduction | 1

Chapter 1

Introduction

1.1 Background
Federated Learning (FL) [1] is one decentralized machine learning variant
that aims to handle cases where training data is sensitive and distributed on
different devices or parties. One main concern of FL is to train the global
model collaboratively on the decentralized training data while protecting data
privacy. In FL,multiple parties train their model locally based on their datasets
and then aggregate all these partial models to obtain one global model which
is expected to gain higher accuracy. In this way, the parties avoid transferring
their sensitive data when collaborating.

For the typical FL architecture, there is one central server used to assist the
FL process for aggregation. All the parties send their updated local models to
the central server for aggregation. The central server, which could be deployed
to one Cloud Service Provider (CSP), performs as a bridge between multiple
parties. However, one deceptive CSP might abuse the data uploaded by the
participants without being detected, and the participants could only choose
to trust the CSP. Another problem is that it is hard for participants to verify
that the aggregation is processed as expected on the central server side. For
instance, onemalicious central servermay abuse the receivedmodels to extract
sensitive data. It could cheat participants by stating that the aggregation is done
but actually, it does not. So the behavior of CSP is invisible to a certain extent,
making it hard to guarantee data security and privacy. In this scenario, there
is a lack of bidirectional trust between the CSP and participants [2].

Trusted Execution Environment (TEE) [3] is one hardware-based tech-
nology that provides one isolated, verifiable, and user-controlled environment
for Confidential Computing (CC). By using a built-in cryptographic system

2 | Introduction

and additional mechanisms, CSPs are prevented from tampering with or
exposing the data or application protected by TEE. TEE helps to reset the
trust relationship between end-users andCSPs by enabling end-users to control
their remote execution environments reliably and securely. However, TEE
also suffers from some security issues such as kernel attacks, side-channel
attacks, or architectural attacks [4], which can violate the security guarantees
of TEE especially data confidentiality. What’s more, the TEE system itself
is fully controlled by the CSP, thus if it is under some kind of attack and not
secure anymore, it is difficult for users to realize such risks in time.

Homomorphic Encryption (HE) [5] is one cryptographic primitive that
allows one ormore operations, such as addition ormultiplication, on encrypted
data without decryption, protecting sensitive data from exposure during the
whole process of computation. HE can guarantee the confidentiality of data.
However, it is not designed to provide data integrity. Without integrity
protection, the messagemight be tampered with during transmission or even in
the storage of the server. On the other hand, HE does not provide the integrity
of code or algorithm as well. Without additional mechanisms, it is impossible
to ensure that aggregation runs as expected on the server side.

By leveraging Federated Learning and Homomorphic Encryption with
TEE-based Confidential Computing together, this paves one possible way
to scalable and secure multi-party data collaboration. CC and HE are
complementary. In the scenario of FL, TEE is able to enhance the data and
code integrity that HE lacks, while HE can provide a stronger guarantee of
data confidentiality considering the various security vulnerabilities that TEEs
have. By leveraging TEE and HE together with FL, it is promising to achieve
stronger security and privacy towards customer data and workloads through
the entire lifecycle.

However, existing gaps in the protocol stack and tooling slow down the
wider adoption of CC and HE in cloud settings. Most of the existing FL
frameworks don’t support HE or only support 1 or 2 schemes with few
concerns about their efficiency (see more details in Chapter 2). And there
is a lack of study about deploying FL with HE in TEEs. Different techniques
have different pros and cons, requiring a well-designed framework to leverage
all these primitives properly. Moreover, The use of additional security
mechanisms results in reduced efficiency and performance due to increased
computational requirements and encryption noise. A higher level of security
and guarantee of privacy always suffers from higher resource consumption and
extra overhead [6]. Therefore, it is necessary to trade-off between efficiency
and security to fit specific demands.

Introduction | 3

...
Party 1 Party 2 Party n

Cloud
Service

Global
Model

Figure 1.1: The General goal of this project is to enable multiple parties to
collaborate on model training in a cloud context while retaining data privacy.
Additional securitymechanisms are required to protect data integrity and avoid
leaking sensitive information.

1.2 Research Question
As mentioned in Section 1.1, several technologies protect data privacy during
the data collaboration between multiple parties.

FL gives one decentralized approach for Machine Learning (ML) on
distributed training data. HE allows computations on encrypted data, thus
enhancing the data confidentiality in the whole process. TEE can be used
to achieve CC in the CSP side. FL is the fundamental approach for data
collaboration while HE and TEE are two technologies to enhance data security
and privacy. But all of them have their limitations, as introduced in Section
1.1. It is hard to guarantee the security and privacy of data collaboration by
any of them alone.

In Section 3.1, we define the threat model this project considers, including
the adversaries and their capabilities. Therefore, the research question of this
thesis project is: Does combining the confidentiality guarantees of HE with
integrity guarantees of TEEs protect the security of data in the FL setting
from the predefined adversaries?

The developed confidential FL framework is expected to provide strong
data security and privacy during the whole lifecycle, which means that the

4 | Introduction

data confidentiality and integrity should be enhanced during both the data
transmission between the server and participants and the data processing on the
CSP side. On the other hand, it is supposed to retain the model performance
with acceptable extra computation and communication overhead caused by the
security mechanisms.

1.3 Objectives
The purpose of this project is to enhance data security and privacy in the
FL context by applying HE and TEE. To achieve it and answer the research
question, we expect to make the following objectives one by one.

1. Conduct one background pre-study of FL, HE, and CC, including one
survey of existing Federated Learning frameworks, focusing on support
of HE and other security mechanisms as well.

2. Design one FL framework combined with TEE and find HE scheme(s)
that support required operations with acceptable overhead.

3. Implement the prototype with hardware-based TEE and test it in
different FL scenarios (i.e. various models and datasets).

4. Formulate and implement a set of relevant benchmarks to evaluate the
performance of the proposed framework.

1.4 Research Methodology
To achieve the objectives, this section defines several detailed tasks, each of
which includes several steps and challenges. The corresponding methods that
we plan to apply are also described here.

1.4.1 Information Collection
To explore the existing FL frameworks and figure out if they support
Homomorphic Encryption well, this thesis will look through not only web
resources (such as the tutorials and technical documents) but also other related
surveys and papers. The survey will also include relevant extensions and
plugins. As there are a lot of frameworks around FL, the open-source and
prevalent (more stars and forks on Github∗) frameworks will be considered

∗Github: https://github.com/

https://github.com/

Introduction | 5

a higher priority, such as FATE [7], Flower [8], OpenFL [9], TensorFlow
Federated [10]. In this way, we are able to figure out the shortcomings of
existing frameworks and possible improvements. It also helps to collect more
information which may provide inspiration in the future as well. The literature
review is also conducted in this step.

1.4.2 Framework Developing
To give our own solution, this project will use one surveyed framework
as a start, and our solution will be added as one extension to it. Some
frameworks such as Federated AI Technology Enabler (FATE), TensorFlow-
Federated (TFF) already support some kinds of HE schemes, but there has
been no combination with confidential computing. And Plugins such as
BatchCrypt [11] are out of maintenance. To decide the FL framework that
the project will be based on, several aspects are considered:

1. If it is easy to start developing and convenient to deploy.

2. If it has existing HE support or available HE extensions.

3. If it is convenient and flexible to add new features, i.e. by extensions or
plugins.

4. If it has well-organized documents and tutorials.

More details about the developing methods are in Section 3.2.

1.4.3 Framework Testing
After developing the framework prototype, it will then be applied and tested in
a scenario where multiple organizations or enterprises share the information
for better collaboration. The tests will consider different FL scenarios, such as
different models, client numbers, or datasets. Metrics include model accuracy,
computational speed, and memory occupation compared to the plaintext.
Some further improvements may be applied based on the evaluation results.

The resulting prototype will be deployed in a real TEE. In our project, the
implementation will rely on x86 platforms accessed using the AWS platform
equipped with AWS SEV∗.

For more details of metrics and test settings, please refer to Section 3.3.
∗AWS SEV-SNP: https://docs.aws.amazon.com/AWSEC2/latest/User

Guide/sev-snp.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html

6 | Introduction

1.4.4 Advanced Strategy Exploration
To optimize the system performance and security, this project will conduct an
evaluation of various HE schemes and compare their pros and cons. It is also
promising to optimize existing HE schemes to make them fit the needs of FL
training better.

In this step, we hope to develop strategies that select proper HE schemes,
and FL algorithms considering the demands of security and efficiency.

1.4.5 Report Writing
As the project proceeds, we keep recording and writing down the findings, and
finally, we will arrange and reorganize these findings as one report. The report
needs to not only include all the details but also analyze and give conclusions.

1.5 Delimitations
Because of the limitation of time and resources, this project mainly focuses
on the application instead of the algorithms themselves. The project will not
develop totally new HE algorithms or FL algorithms. Besides, in this project
we do not plan to dive deeply into the principles of TEE or compare the
performance of different TEE products. Instead, we focus on the application
of it and deploy our aggregation service on it. For more details about the
usage of TEE, its advantages and disadvantages and so on, we suggest to refer
the survey we did in Section 2.1, where some relevant works provides more
comprehensive information about it.

This project will only focus on the scenarios that CanaryBit is able to
provide, which means that the framework development mainly considers some
specific scenarios. Although we strive for flexibility, testing and improvement
across a wide range is challenging.

1.6 Evaluation & News Value
The main contribution of this project will be the framework that we are going
to develop. After developing the framework, we are also going to test and
evaluate its performance by multiple metrics in different FL scenarios. For
more details, please refer to Section 3.3.

The baseline is to successfully combine HE and TEE with FL and
implement the prototype to the given scenarios. The new framework should

Introduction | 7

enhance the security level and give an evaluation of its efficiency. After
reaching the baseline, it’s possible to improve the framework by applying
new strategies or algorithms. For example, strategies for choosing proper HE
scheme or FL aggregation algorithm for a flexible trade-off between efficiency
and security performance.

The project will utilize HE to enhance the security and data privacy of
the FL system in a confidential computing context. The prototype will be
implemented in a real confidential computing environment (TEE), which will
prove the feasibility of our framework. Nowadays people are putting more
attention on the data security and user privacy preservation in the context of
ML and cloud technology. Secure collaboration of ML is becoming more
essential with the increase of applications relying on ML and FL. Policies
are formulated requiring companies to have certain protection of sensitive
information as well. All these factors lead to an urgent demand of additional
secure mechanisms for distributed model training. Therefore, people who are
looking for more secure FL solutions may be interested in this work.

Besides, the project also surveys other popular frameworks, which could
be helpful when someone needs to choose the framework for certain security
concerns.

8 | Introduction

Background | 9

Chapter 2

Background

2.1 Confidential Computing
CC is one new technology that aims to process data in a confidential and secure
manner. It’s proposed to protect the sensitive data in use from unauthorized
access or exposure. According to the definition given by the Confidential
Computing Consortium, CC is the technology that provides ”the protection of
data in use by performing computation in a hardware-based, attested Trusted
Execution Environment” [12]. TEE is one hardware-based cryptographic
technique that creates one secure and isolated execution environment where
the code and data within it are protected. TEE is commonly defined to provide
at least three security properties: data integrity, data confidentiality, and code
integrity. The code running in one TEE can not be tampered with and the
data in use in the TEE is protected from being leaked or tampered with, thus
fulfilling the security requirements of confidential computing well [13, 14].
Some technique details of TEE are introduced as follows.

The property of isolation assures confidentiality as the applications
running in TEE are isolated from each other and the rest of the system, or
called Rich Execution Environment (REE). The sensitive data is stored in one
secure area in memory, thus the data confidentiality is also guaranteed [15].

The data and code integrity are protected via two properties of TEE.
The execution environment including its runtime and memory is isolated
from other applications, therefore preventing unauthorized modifications from
outside. What is more, TEE includes one feature called remote attestation
(remote verification) which allows TEE to prove its trustworthiness for remote
users. More in detail, the TEE is able to generate one certificate that contains
information about TEE and the data within it, such as the process id, the

10 | Background

application code, and the underlying hardware. This certificate is signed by
the embedded private key inside the hardware and could be verified by the
CA [16]. In this way, the user is able to make sure that the code is running as
expected inside TEE, thus the integrity is achieved.

There are multiple TEE hardware architectures provided by different
vendors, such as Intel SGX [17], AMD SEV [18], and ARM TrustZone [19].

2.1.1 AMD Secure Encrypted Visualization
This project implements AMDSecure Encrypted Visualization (SEV) for TEE
protection. In this section technique details of SEV is discussed.

AMD SEV technologies include three generations of SEV, which is
designed for Virtual Machine (VM) isolation. The first generation of SEV
only implements Secure Memory Encryption (SME) to isolate VM instances
in a memory level, which means that each VM is assigned a dedicated AES
key for memory encryption. In this way, the data in use is automatically
encrypted in memory and all the other components such as any other VM or
the hypervisor are not able to read the plaintext data without a key. However,
only SME is not enough even for data confidentiality since the CPU register
state is still public. The second SEV generation SEV Encrypted State (SEV-
ES) is then proposed to add a higher level of protection. In SEV-ES, the
CPU register state of each VM is encrypted when it stops running so that
the data in use inside the CPU is also under protection. SEV-ES provides
a stronger guarantee for confidentiality and a certain level of integrity since
it is also able to check if the CPU register state is changed by any malicious
components. The third generation of SEV is called SEV Secure Nested Paging
(SEV-SNP). In SEV-SNP, memory integrity protection is achieved, which
is not provided by either SEV or SEV-ES. SEV-SNP is then able to protect
VMs from malicious hypervisor-based attacks, such as data replay or memory
re-mapping. SEV-SNP achieves memory integrity protection by adding a
mechanism called Reverse Map Table (RMP), which tracks the ownership of
each memory page. With RMP, each page of memory can only be accessed
by one specific owner, and only the owner is able to write it. And of course,
the RMP itself is not writeable by software. Besides, SEV-SNP also adds
several optional functionalities to handle specific security issues such as side
channel attacks [20, 21]. Since SEV-SNP provides both data confidentiality
and integrity protections, SEV-SNP fulfills the requirements of CC. In this
project, the third SEV generation SEV-SNP is used as the TEE to provide CC.

AMD SEV also provides remote attestation so that a third party could

Background | 11

verify the data comes from the specific VM. To get a valid attestation report,
the VMfirstly sends the attestation request with a block of dataM to the AMD
Secure Processor (AMD-SP) via a protected path. Then the AMD-SP uses the
Versioned Chip Endorsement Key (VCEK) to sign an attestation report which
includes the dataM, system information and the Signed Identity Block (IDB)
information. IDB is generated during the VM launch stage and contains the
VM identifier and launch digest. However, SEV and SEV-ES only support
attestation in the guest VM launch stage, while SEV-SNP allows flexible
attestation. In SEV-SNP, an attestation report could be requested at any time
from the AMD-SP by the VM[20]. In this project, the remote attestation could
be used to guarantee the integrity of models and the security for exchanging
keys when building the secure communication channel between participants
and VM.

2.1.2 Security Challenges of AMD SEV
Although AMD SEV is designed to fulfill the requirements of CC, it is always
facing security challenges and might be vulnerable to some attacks violating
its security guarantees, especially confidentiality. For instance, AMD SEV
allows outside access to read its encrypted VM memory, which might
allow CPU-side attacks that violate the data confidentiality by monitoring its
memory updates [21]. Li et al [22] recently found another vulnerability of
AMDSEV that exploits ciphertext side channels to steal private keys, allowing
adversaries to infer private execution estates or recover the plaintext.

Although AMD SEV is always facing new security issues, AMD is
updating its design to address these issues constantly. In this project,
we assume AMD SEV is at least secure enough to protect the data and
code integrity. By running the FL aggregation service inside the TEE, the
participants are able to verify that the aggregation is working as expected.
Addressing the security issues of TEE is out of the scope of this project.

2.2 Homomorphic Encryption
Homomorphic Encryption (HE) is one cryptographic technology that can do
computations on encrypted data directly [5], which is in contrast to the classic
encryption, where the data has to be firstly decrypted before performing any
computation. HE could be defined by the following equation:

E(m1)⊕ E(m2) = E(m1 ⊕m2), ∀m1,m2 ∈ M (2.1)

12 | Background

where E is the encryption method, ⊕ is the supported operation andM is the
message domain.

The process of performing computation on the encrypted data is called
homomorphic evaluation. The confidentiality of the data is preserved during
the homomorphic evaluation and the result is in an encrypted form. The final
result of the expected operations could be obtained by decrypting the result of
homomorphic evaluation.

2.2.1 Homomorphic Encryption Algorithms
There are several variants of HE, but they all satisfy the definition 2.1.
According to the level of supporting evaluation operations, HE could be
classified as three main types: Fully Homomorphic Encryption (FHE),
Somewhat Homomorphic Encryption (SWHE), and Partially Homomorphic
Encryption (PHE) [23, 24, 25].

FHE is the most powerful type of HE since it supports arbitrary
computations and an unlimited number of evaluation operations on the
encrypted data. However, it also has the highest computation and memory
overhead. FHE algorithm example is Gentry’s bootstrapping scheme [26],
which uses ideal lattices as plaintext to support arbitrary homomorphic
operations.

SWHE allows some types of operations a finite number of times. SWHE
is not as powerful as FHE, but more efficient and practical in real use cases
since it does not cost as much computation and memory resource as FHE.
Examples are Fan-Vercauteren (FV) scheme [27] and Cheon-Kim-Kim-Song
(CKKS) scheme [28].

FV algorithm supports both addition and multiplication in the integer
plaintext space while CKKS algorithm allows complex numbers as plaintext
and supports both addition and multiplication, too. However, CKKS only
supports approximate computation with a given precision. It is also necessary
to note that by applying the bootstrapping technique, CKKS could become one
FHE scheme [29, 30].

PHE allows only one type of operation but has no limit to the number of
times, with the highest efficiency and lowest overhead compared to FHE or
SWHE. An example is Paillier [31], which only supports addition operation
and takes integers as plaintext.

Considering that these algorithms have different pros and cons, the trade-
offs need to be done based on the requirements and preferences of specific use
cases. FHE is suitable for the scenario where functionality is more considered

Background | 13

than efficiency, while PHE is the best choice when only one type of operation
is required [23]. For this project, different HE schemes may be used for
different settings. And it also depends on which FL aggregation algorithm is
used. For example, if the aggregation requires computation on float numbers,
then CKKS could be suitable, or if the classic FedAvg algorithm is used, one
PHE scheme that only supports addition operation is enough. The choice of
HE scheme follows the principle of least functionality to reduce costs and
maximize efficiency, which means the scheme that fulfills the requirements
and does not have redundant features is preferred [6].

2.2.2 Limitations of Homomorphic Encryption
Homomorphic Encryption (HE) is powerful and promising for a wide range
of applications. However, it also suffers from several limitations, making it
challenging to implement. In this section, the limitations that this project
concerns are mainly discussed. Briefly, the efficiency and security concerns
are mostly considered in this project.

Considering the extra cost caused by HE, the processing speed of HE
evaluation is very slow and the cost of computational resources and memory
could be many more times higher than direct computation on plaintext data.
For instance, CKKS algorithm could be more than 10000x slower than
equivalent operations on plaintext [6]. In a FL setting, the encrypted data is
going to be sent to the server, thus the communication cost also matters. As the
ciphertext is always larger than plaintext, e.g. FHE the ciphertext size could
be over 1000x larger than plaintext [6], HE also causes extra communication
overhead. In general, the more operations the HE algorithm supports, the
higher overhead it suffers [32, 6, 33].

Another limitation is that HE is only able to protect the confidentiality
of data, but can not provide integrity by itself, which means that it can not
guarantee that the encrypted data has not been tampered with by an attacker or
adversary. However, this could be patched by some additional mechanisms,
such as checksums [34]. And there’s also a recent research conducted by
A. Viand et al. [13] that shows the possible approaches to provide integrity
by leveraging HE with some other cryptographic primitives together, such as
Message Authentication Code (MAC), Zero-Knowledge Proofs (ZKP) or TEE
attestation.

14 | Background

...
Party 1 Party 2 Party n

Cloud
Server

Global
Model

Upload
Local Model

Download
Global Model

Local training

Data Data Data

Local training Local training

Local
Models

Aggregation

Figure 2.1: FL architecture

2.3 Federated Learning
Federated Learning (FL) is one variant of the machine learning approach
that allows multiple clients to collaborate on training one more powerful
global model without sharing their raw training data with each other or the
central server, which means that the data remains on local devices and the
global model is trained in a decentralized manner by only sharing intermediate
results [1]. The classic architecture of FL is shown in Figure 2.1. FL has the
ability to train global models on decentralized data and retain data privacy
and security at the same time. Since the training data is kept locally, sensitive
raw data, such as medical records or personal private information, could be
protected from exposure. Another advantage of FL is that it can help reduce
the communication overhead by completing parts of training locally and only
transmittingmodel parameters or gradients instead of raw data. To be brief, FL
especially benefits the scenarios where the distributed training data is sensitive
or too large to be sent to the central server [35].

There are also several types of FL, according to how data is distributed and

Background | 15

how the collaboration is conducted [35, 36, 37]:
Horizontal Federated Learning (HFL) is the most general type for the case

where the data samples in different parties have similar features but different
indices [1, 38]. In HFL all the participants are likely to be the same type. For
example, multiple hospitals collaborate to train one global model for COVID-
19 image processing. In this case, the images from different hospitals have
the same features but belong to different patients. And HFL is the main FL
type considered in this project. Except HFL, several other FL variants are
also important but are not used as widely as HFL. Vertical Federated Learning
(VFL) takes the case that the data samples from different parties have different
features but similar indices [39], i.e. from the same group of people. Federated
Transfer Learning (FTL) is designed for one more complicated scenario where
data samples of different parties have different features and different indices as
well [40]. Federated Reinforcement Learning (FRL) handles the demand that
different parties need to leverage Reinforcement Learning to learn from their
own actions and environment rewards [41, 42].

Considering HFL, each iteration of the training process is divided into 3
steps [43]. First, all the participants fetch the current global model from the
central server and prepare a local dataset to initialize local training. In this step,
all the participants have the same initial model but different training datasets.
And the machine learning algorithm for local training is decided. Second,
local training is performed on each party’s local dataset to refine the model
using the decided algorithm. In this step, each participant trains the model to
adjust to their own data. Third, all the participants send the refined models
back to the central server for global aggregation. The server uses a specific FL
algorithm to aggregate the parameters of all participants’ models and update
the global model. Then the updated model is sent back to each participant to
trigger the next iteration until the global model converges.

FL is promising and able to be applied to a lot of applications in different
areas, such as image recognition [44], healthcare [45, 36] or autonomous
vehicles [35]. In this project, FL is the basic setting for data collaboration and
all the techniques (HE and CC) mentioned above provide additional security
protections.

2.3.1 Federated Learning Algorithms
Various Federated Learning algorithms are proposed for aggregating. In this
section, the most widely used two algorithms are introduced, and these two
will be mainly considered and leveraged in this project.

16 | Background

FedAvg is the classic FL algorithm proposed by B. McMahan et al. in
2017 [1]. The goal of FedAvg is to minimize the global objective function:

min f(w) =
K∑
k=1

pkFk(w) (2.2)

where w is the global model parameters, K is the number of participating
devices, pk is the weight value and Fk is the objective function of device k. pk
could be 1

K
for a non-weighted version or nk∑K

k nk
for a weighted version where

nk is the size of training data for device k.
To achieve this, FedAvg is designed as the following steps. Assume there

are totally N participants, for each iteration t, K of them are selected to
collaborate in updating the global model. Then each of these K participants
uses Stochastic Gradient Descent (SGD) algorithm [46] to optimize the
downloaded global model wt, and the objective function for participant k is
Fk. After a certain number of epochs, the updates wk

t+1 are then sent back to
the central server and averaged in a weighted manner to obtain the updated
global model wt+1.

FedAvg is already proven to be practical and widely used in real
applications [35]. However, it is not as powerful as expected to handle
the systems and statistical heterogeneity of data. Systems heterogeneity is
caused by the characteristics of each participant (i.e. available computational
resources and memory). Statistical heterogeneity means the non-identically
distributed training data between participants. To handle this issue, FedProx
is designed by T. Li et al. in 2020 [47].

FedProx follows the same procedure as FedAvg but makes some
modifications to the optimizer and the partial objective function of each
participant. Each fk is added by one proximal term to balance the variable
partial update like this:

fk(w
k, wt) = Fk(w

k) +
µ

2
∥wk − wt∥2 (2.3)

Based on the new objective function, FedProx defines one γt
k-inexact

minimizer for local optimization: wk
t+1 = argmin fk(wk, wt). A

w∗ is considered as one γt
k-inexact solution when ∥∇fk(w

∗, wt)∥ ≤
γt
k∥∇fk(wt, wt)∥, where ∇fk(w,wt) = ∇Fk(w) + µ(w − wt).
In this project, FedAvg is the first priority and if time allows, FedProx will

also be realized.

Background | 17

2.3.2 Secure Aggregation
Although FL is designed for the protection of local sensitive data, there are still
some security issues. Recent research shows that even the exposure of model
parameters may cause a leakage of sensitive information which should be
protected from being leaked. Attackers could perform membership inference
attacks to create multiple ”shadow models” that imitate the functionality of
the victim model and use these ”shadow models” to extract information from
the training data used by the victim model [48]. To enhance data privacy and
protect confidentiality, some improvements are performed on FL.

Privacy-Preserving Federated Learning (PPFL) is one type of FL focusing
on data privacy and security of participants. Besides collaborating on training
the model by aggregating local models of all participants, Privacy-Preserving
Federated Learning (PPFL) adds additional mechanisms to enhance a higher
level of data privacy and security. In PPFL, various advanced cryptographic
technologies are leveraged to protect the sensitive data in different levels of
security and in different stages [49, 50]. Secure Aggregation (SA) is one
important component of PPFL, which allows model aggregation in a secure
manner where the local updates are not exposed to any other participant or the
central server during the global model aggregation [51, 52].

There are various techniques that could be used for Secure Aggregation
(SA), and one common idea is to add well-designed noise to the local model
parameters before they are sent to the central server. In this way, the detailed
information of the specific model is hidden. One advanced cryptographic
technique called Differential Privacy (DP) could be utilized for such noise
generation. However, this method could suffer from a decrease in model
accuracy because of the additional noise or mask [53]. Another idea is to
combine Homomorphic Encryption (which is introduced in Section 2.2) with
Federated Learning, which means using HE to encrypt the model parameters
before sending it and letting the central server to perform the homomorphic
evaluation operations for model aggregation [50]. In this way, the local models
are aggregated without decryption, thus the data confidentiality is enhanced.
Relying on Homomorphic Encryption, some more advanced techniques such
as Multiparty Homomorphic Encryption (MHE) could be used to gain an even
higher level of data privacy [54]. There is another cryptographic technique
called Multi-Party Computation (MPC), which represents the protocols that
are designed for multiple parties to collaborate on computing one function
based on inputs from all the participants without exposing the private input to
any other party. HE is one possible cryptographic primitive to achieve Multi-

18 | Background

Party Computation (MPC). However, MPC protocols could also be designed
based on other cryptographic primitives such as Secure Sharing (SS). The
difference is that HE is focusing on arbitrary functions while limiting the types
of operations, however, MPC is more about computing the specific function
and no need to support other operations [52]. Generally, all of these methods
involve advanced cryptographic methods to enhance privacy and security.

To gain better data privacy, it is hard to avoid additional overheads and
effects on model quality. On the one hand, the additional cryptographical
mechanisms result in high computational overhead and memory occupation,
slowing down the training process [6]. On the other hand, as mentioned
before, it is hard to retain the same quality of model as well as a high level
of data privacy due to the additional noise, especially when the scale of FL
is large. How to solve or relieve these problems remains challenging [55]. In
most cases, it is necessary to make trade-offs between performance and data
security.

2.3.3 Comparison of FL frameworks
There are various Federated Learning frameworks available for use, and in
order to choose one appropriate framework for this project, one survey is
conducted to compare different FL frameworks focusing on their support of
Homomorphic Encryption. In this project, a total of six open-source FL
frameworks are surveyed and compared. The results are arranged and listed in
Table 2.1.

Name FL Algo Exp Supported HE HE Schemes Extensions Organization Github Stars

FATE[7]
FedAvg
HeteroLR
HeteroNN

PHE, SWHE
Paillier
CKKS
FV

BatchCrypt
FLASHE WeBank 5k

TFF[10]
FedAvg
FedSGD
FedProx

PHE, SWHE, FHE
Paillier
CKKS
BFV/BGV

TF-Encrypted
TF-SEAL Tensorflow 2.1k

PySyft[56] FedAvg PHE, SWHE, FHE
Paillier
CKKS
BFV/BGV

TenSEAL OpenMined 8.8k

Flower[8]
FedAvg
FedProx
FedBN

× × × Flower 2.7k

IBM FL[57]
FedAvg
FedProx
FedAdam

Unknown Unknown × IBM 423

OpenFL[58]
FedAvg
FedProx
FedOpt

× × × Intel 546

Table 2.1: Comparison between different FL frameworks

Background | 19

Federated AI Technology Enabler (FATE) is an industrial grade FL
framework developed by WeBank. It not only supports Federated Learning
but has some additional functions for better data security. It has secure
computation components that support Homomorphic Encryption and Multi-
Party Computation, however, with some limitations. FATE framework
embedded in one Paillier cryptosystem and also supports other secure
techniques such as secret sharing. With the help of some available extensions,
such as FLASHE [59] or BatchCrypt [11], FATE is able to enable more
powerful HE schemes such as FV or CKKS.

TensorFlow-Federated (TFF) is another popular FL framework designed
for facilitation of FL research and experimentation. Not like FATE, TFF
enables developers to simulate the FL process easily and see the results. TFF
itself does not support HE explicitly. But there are some well-developed
assistant extensions. With the help of these extensions, TFF is able to
leverage HE for secure aggregation. More specifically, TFF is able to
achieve PHE with the help of TF-Encrypted extension [60], which supports
Paillier HE scheme. By using the TF-SEAL extension [61], TFF is able to
leverage Microsoft SEAL, which is a powerful FHE library that supports both
FHE (Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski-Fan-Vercauteren
(BFV)) and SWHE (CKKS).

PySyft is one multi-language library that supports easy Federated
Learning. It is an extension of Pytorch and enables some additional
functions for data security. There’s one library combined with PySyft called
TenSEAL [62] that extends the Microsoft SEAL library to enable tensor
operations and enhance the HE capability. With the help of TenSEAL, PySyft
gains the functionality of HE and supports all the schemes available in the
SEAL library such as CKKS, BFV, and BGV.

The three frameworks introduced above support HE by themselves or by
some available extensions. Besides, another three frameworks that are not as
popular as them are also surveyed.

Flower is a friendly Federated Learning framework with nice tutorials
and flexible design. One advantage of Flower is that it is able to combine
with any Machine Learning framework like Pytorch, TensorFlow, or JAX.
Flower seems to not support HE. However, considering it’s very flexible and
convenient for configuration, it’s possible to combine existing HE libraries,
such as TenSEAL [62] and Pyfhel [63] into it. Although it does not support
HE by itself, indeed there is one extension called Salvia [64] that enables
it to support secure aggregation by SecAgg protocol, which is one MPC
protocol [65].

20 | Background

IBM Federated Learning (IBM FL) is a Python framework for FL in an
enterprise environment. IBM Federated Learning (IBM FL) actually support
HE according to their documents. It’s also mentioned that the user is able to
set four levels of encryption, which provide different levels of security and
precision. Higher-level encryption achieves better security and precision but
requires higher resource consumption. However, the specific HE scheme is not
mentioned in their documents, thus more technique details remain unknown.

Open Federated Learning (OpenFL) is also one Python 3 framework for
FL. However, OpenFL neither supports HE nor has available extensions of
HE.

In this project, Flower is finally chosen to set up the FL environment, and
the TEE and HE are implemented based on it. Flower is very flexible and
easy to learn, compared to other frameworks like FATE or TEE. It is the
newest framework, having a rapid increase of Github stars, which shows its
potential. It is open-source, and has comprehensive documents, especially
code examples for different settings, making it easy and convenient to learn
and start developing quickly. Another important point is that Flower is
lightweight and focuses on FL, while FATE and PySyft have many redundant
functions for this project. Although it does not support HE by itself, it is
very convenient to combine existing HE libraries into it since it provides one
Numpy client that allows developers to add operations to the data in standard
Numpy format. On the contrary, the existing plugins of FATE are out-of-date
and can not be implemented easily because of the lack of documents. Although
TEE and PySyft have available HE extensions, because of their complexity, it
is relatively harder to develop new extensions or modify existing ones.

There are actually other frameworks like Clara∗ developed by Nvidia, but
they are either not open-source or not widely used.

2.4 SSL/TLS
The Secure Sockets Layer (SSL) and its successor Transport Layer Security
(TLS) are cryptographic protocols for secure communication over a network.
They are designed to establish secure connections between parties and
provide confidentiality, integrity, and authenticity in the data transmission.
SSL [66] was firstly proposed in 1990s and quickly evolved into TLS [67] in
1999. In recent 20 years TLS has grown across several versions (the latest
version is TLS 1.3) and became the mainly-used protocol for secure internet

∗Clara: https://developer.nvidia.com/blog/federated-learning-clara/

Background | 21

communication [68].
To establish an SSL/TLS connection between a client (send the request

to initiate) and a server (wait and respond to a request from the client), a
handshake protocol is designed to negotiate the TLS version to be used,
encryption algorithms, exchange keys, and certificates and build a secure
session [69]. For authentication, SSL/TLS allows the client and server
(Optional) to verify the identity of each other by a certificate signed by a
Certificate Authority (CA). The certificates of the server and client provide
authenticity when setting up the connection and prove that the server and client
are valid entities. In the process of handshaking, asymmetric encryption is
used for exchanging symmetric keys (master secret) used for encrypted data
transmission. Symmetric encryption ensures the confidentiality of data and
achieves a higher efficiency compared to asymmetric encryption by using the
same key for both encryption and decryption.

Data transmitted on the encrypted link is divided into records, each
comprising a header and payload. To protect the data integrity, a Message
Authentication Code (MAC) is generated using the shared symmetric key
and attached to the message, detecting any invalid modification during the
transmission [69].

SSL/TLS is widely used in modern networks and has been applied to
various applications (protocols), such as HTTPS [70] for web browsing,
IMAP/POP3 with TLS [71] for email services, and so on. In this project,
SSL/TLS is utilized to enhance the communication security between clients
and the aggregation server.

2.5 Threat Intelligence
To evaluate the performance of the proposed framework in this project and
demonstrate its feasibility, the framework targets to train one ML model for
Threat Intelligence (TI).

Threat Intelligence (TI) is one important component that helps to detect
network intrusions and security vulnerabilities [72]. With the increasing
sophistication of cyber attacks, traditional security measures, such as firewalls,
antivirus software, or other signature-based detection systems, are no longer
sufficient enough [72, 73]. In this context, TI becomes more and more
important to provide cybersecurity defense, faster incident response, and aid in
making decisions. TI refers to one process that collects and analyzes data from
multiple sources to identify potential cyber threats and relieve the compromise.
The objective of TI is to help network administrators of organizations make

22 | Background

informed decisions and realize the risk landscape. By leveraging the rich threat
information and intelligent data processingmethods such asMachine Learning
(ML), TI is able to handle more complex security issues that traditional
methods can not deal with, such as zero-day attacks [73].

The data that TI utilizes comes from a wide range of sources, such as
the logs of computers, open-source datasets, or malware repositories. The
collected data is analyzed to find the patterns or trends that could indicate
cyber threats or potential vulnerabilities, such as malware infections, remote
command execution, or advanced persistent threats (APTs). To analyze large
volumes of data, TI utilize ML algorithms to extract patterns and correlations
from the mass data automatically. ML models are able to detect the evidence
that humans might miss and also retain the ability to recognize new security
threats [73]. Through this data collection and analysis, a TI system can identify
potential risks and take appropriate measures to handle them on time. One use
case of TI is an anomaly detection system based on one ML model trained on
Sysmon log data that records user activities on Windows computers. Sysmon
is one Windows system service that logs detailed Windows system activities,
such as process creations or network connections. After training the model
on such a dataset, it is able to detect anomalous events and signal potential
security incidents, which could alert on the dashboard [74].

Besides, with TI the administrators are able to process the anomalous
events and obtain reasonable indicator of compromises (IOCs) easily, i.e.
suspicious IP addresses or URLs, malicious file hashes, and source email
addresses. We can feed firewalls, gateways, or other security event
management systems with the obtained IOCs. Dashboard applications can
visualize and index them as well.

2.5.1 Threat Intelligence Sharing
As mentioned above, TI is data-based and requires analysis of comprehensive
data to gain intelligence. Therefore, TI information sharing and collective
learning as shown in Fig. 2.2 lead to many benefits. Considering that each
organization has different data, some samples might be unique. The TI
sharing allows establishing TI on the data from sources of all participating
organizations. Therefore, it is able to cover more potential cyber threats with
higher accuracy and speed up the identification compared to the local TI based
on data only from certain organization [73].

Another advantage of TI sharing is to improve the collaboration between
organizations to face new threats, reducing the likelihood of cascading effects

Background | 23

Preprocessing

Windows Sysmon
logs from users

(private)

Local dataset
(private)

ML model for
anomaly detection

Organization 1

log_1_1.log

log_1_n.log

...

Preprocessing

Windows Sysmon
logs from users

(private)

Local dataset
(private)

Organization N

log_N_1.log

log_N_n.log

...

... Collaborate
training

user 1

user n

user 1

user n

Figure 2.2: An example of threat intelligence sharing.

across the whole system or all organizations. If one organization suffers from
the new threat, with TI sharing other organizations have a greater chance to
patch it before the vulnerability is exploited [72].

However, TI sharing is facing several barriers that are not only relevant to
technology but also policies and company concerns. Considering the example
of using Sysmon log data to train the anomaly detection model, organizations
will not be allowed to share the raw Sysmon logs with another party since the
logs contain sensitive data that organizations do not want to expose. This is a
privacy issue that widely exists. Another example that decreases the TI sharing
is fearing negative publicity. Some threat informationmay cause a competitive
disadvantage if it is leaked to other parties. And of course, there aremany other
reasons for not sharing, such as quality issues and untrusted participants [72].
Although FL can be a good alternative for TI sharing [73], companies are
still unwilling to share their trained models directly for some concerns. For
instance, others might misuse the model without the owner’s permission,
harming the interests of the model owner. As discussed in Section 2.3.2,
attackers are able to extract sensitive information from the model parameters
as well, leading to a need of additional security mechanisms.

2.6 Related Work
The goal of this project is to protect the data security during the whole lifecycle
of FL. There are some other research works and frameworks focusing on

24 | Background

similar topics. In this section, some existing frameworks or techniques are
reviewed.

In 2017, V. Bonawitz, et al. [52] proposed one novel failure-robust MPC
protocol which leverages Secure Sharing (SS) to handle the arbitrary drop
of participants. The security is proved under the host-but-curious and active
adversary settings. The idea is to add well-designed masks to the message
before sending it to the central server. The sum of all masks is zero thus
they don’t affect the aggregation result. The key or mask of the dropped
user could be retained by Secure Sharing (SS). The paper also designed some
optimizing mechanisms for higher efficiency and handling exceptions. The
method introduced in this paper is always named as SecAgg. And based on this
work, J. Bell et al [75] in 2020 designed a more flexible solution represented
as SecAgg+. In SecAgg the masks of each participant are generated by all the
other participants, which is not feasible for large-scale scenarios. SecAgg+
improves this by allowing a limited number of masks only shared by the
neighbors. One (k-1)-connected communication graph is used to maintain the
state. In this way, the architecture is more flexible and easily implemented
for a large number of participants. However, both these two methods require
relatively complicated interactions between participants and the central server
since the drop of participants in every cycle should be handled, causing extra
latency. And it assumes an honest-but-curious server without considering
possible malicious insider attacks.

In 2020, K. Wei, et al. [76] designed one differential privacy enabled FL
framework called Noising before Model Aggregation FL (NbAFL). Before
sending the update to the central server, each participant will first add artificial
noise to the model parameters as a mask, so that during the transmission
and aggregation, the confidentiality of the local model is enhanced. The
global model is also added by noise so that both uploading and downloading
transmission are protected. The specific cryptographic primitive is named
(ϵ, δ)-DP, where ϵ and δ are two parameters to control noising, and the noise
follows the Gaussian distribution. One distinguishing point is that NbAFL has
one theoretical convergence bound on the loss function which could be used
to analyze the effect of noising. However, according to the analysis, higher
privacy protection results in lower convergence performance, and NbAFL is
a better choice when the number of participants is larger. In this project,
there are only a limited number of data owners. Thus, NbAFL and differential
privacy actually suffer from some limitations.

The following several frameworks are all based on Homomorphic
Encryption (HE).

Background | 25

In 2020, C. Zhang, et al. [77] proposed one solution called BatchCrypt that
helps to solve the problem of computation and communication costs caused
by Homomorphic Encryption in FL. The idea is to quantize the gradients,
combining a batch of which into one long integer and encrypting this integer
instead of the original gradients. To enable the encrypted batch gradient
aggregation, one customized quantization scheme and a new batch encoding
scheme are designed. To quantize the gradient values, the clipping technique
is necessary. The paper proposed one analytical model called dACIQ to
determine the clipping thresholds to minimize the cumulative error. The
framework is tested and deployed as one FATE plugin. The experiment
shows that it’s able to accelerate 23x-93x training speedup and reduce the
communication overhead by 66-101x with an accuracy loss of less than 1%.
However, although it accelerates the process a lot, the speed is still not fast
enough, compared to the speed of processing plaintext.

In 2021, D. Froelicher, et al. [45] designed one decentralized framework
called FAMHE that enables distributed analysis collaboration (Federated
Analytics) with a strong privacy guarantee, motivated by Multiparty
Homomorphic Encryption (MHE). The SIMD parallel computing technique
is leveraged to accelerate the computation during the encryption phase.
However, the solution may not be feasible enough for general problems,
since it uses problem-specific methods to optimize the operations (mainly for
GWAS).

In 2021, Z. Jiang, et al. [6] proposed one well-designed HE scheme
called FLASHE only for FL scenarios. The paper evaluated the minimum
requirements of security and functionality and figured out the reason
why existing schemes suffer from heavy communication and computation
overhead. Based on their observation, they design FLASHE without
asymmetric-key design, and that only supports modular addition operations.
Sacrificing the asymmetric-key design and limiting operation, it’s possible to
achieve one lightweight HE scheme that doesn’t induce extra communication
cost and only requires slight computation. The paper also designed two
variants considering the sparsification demand. With the sacrifice of
functionality, FLASHE is able to fulfill the security requirement of Federated
Learning with no additional communication overhead. FLASHE is realized
as one FATE plugin for evaluation and further implementation. However,
as explained in the paper, the design only achieves minimum security
requirements, and the flexibility is limited since it only supports additional
operations. However, this work could inspire this thesis project and be
improved by some additional cryptographic primitives such as TEE.

26 | Background

In 2022, J. Park, et al. [50] proposed one joint FL and HE framework that
enables each client to use its own unique key pair. It’s achieved by Distributed
Homomorphic Cryptosystem (DHC), which uses Multi-Party Computation
for implementing distributed homomorphic operations. The core idea is to
utilize the DHC to give the distributed Cloud Server (CS) & Computation
Provider (CP) system permission to decrypt the client message in a distributed
manner. It requires all of the participants to collaborate to decrypt, thus
few malicious participants do not matter. The process is well-designed and
fully utilizes this DHC mechanism. It utilizes HE to add the noise to the
message in CS and let CPs decrypt the noised messages from different clients
and calculate sum, then encrypt the result again and send it back to CS. CS
removes the noise by HE operation and sends back each encrypted result to
the corresponding client. The performance evaluation shows that it’s more
secure with a sacrifice of computation and communication costs. However,
one tricky thing is the assumption of Cloud Server and Computation Provider.
The framework requires separate CS and CPs, which is not feasible for small-
scale FL, and requires extra communication costs (between CS and CP). Since
in this project, the number of participants is limited, it is unnecessary to split
control and computation parts, which causes extra cost and system complexity.

In 2022, J. Ma, et al. [78] designed one xMK-CKKS framework that
utilizes multikey homomorphic encryption for privacy-preserved federated
learning. The framework uses the aggregated public key for encryption
and forces all the participants to collaborate for decryption. The evaluation
shows that the proposed framework is able to preserve accuracy while
enhancing security with lower computational cost compared to Paillier-based
FL. This work follows the same idea of designing one multi-key homomorphic
encryption scheme, but the architecture is relatively simpler. However, it
still suffers from extra communication cost, since it requires extra interaction
between clients and central server when calculating the decryption shares.

In 2022, M. Sarhan, et al. [73] designed one FL based TI sharing scheme
that allows multiple parties to collaborate in building an ML-based Network
Intrusion Detection System (NIDS) in a FL setting. They leverage FL to
preserve the privacy during training the model for intrusion detection and
compare it with two other scenarios, which are the centralized training without
FL and localized training. The experiments are conducted on two key datasets
in a NetFlow format. The datasets are NF-UNSW-NB15- v2 and NF-BoT-IoT-
v2. The evaluation results show that the accuracy of the federated model is
about 90%, only about 8% lower than the centralized model, but significantly
better than a localized model, which is only about 52%. However, in this work

Background | 27

the security issues of FL itself are not considered at all.

28 | Background

Methodology | 29

Chapter 3

Methodology

3.1 Threat Model
As mentioned in Section 2.3, this project focuses on the HFL scenario, while
the total number of participants/parties is finite (smaller than 100), noted as
cross-silo federated learning [6]. In this setting, there are four phases that have
the risk of information leakage: global model downloading, local training,
local model uploading, and model aggregation. In this project, the global
model is assumed to be public and not contain any sensitive information.
Any party is permitted to access this global model as long as it becomes
one participant in the FL process. But if attackers tamper with it during
global model downloading, i.e. removing one layer of the global model
or modifying some of the model parameters, it might cause a crash of FL
process (if the model structure of layers is changed) or a failure of model
training convergence (if the model parameters are replaced with other values).
Therefore, the global model requires the protection of data integrity in case of
malicious manipulation. On the other side, we assume that the local models
are private and sensitive. The parameters of one local model are private
and contain sensitive information that should be prevented from leaking.
Similarly, the violation of the integrity of local models has negative effects
on FL training, as the tampered local models will also participate in model
aggregation as one kind of poisoning attack [79]. Although there are some
advanced approaches [79, 80] that help to defend and mitigate this kind of
attack, it is hard to eliminate the effects. Therefore, not only the integrity but
also the confidentiality of local models need to be under protection.

To define the threat model for this thesis, we defined two types of
adversaries:

30 | Methodology

...
Client

1
Client

2
Client

3

Cloud
Server

(a) Server adversary

...

Cloud
Server

Client
1

Client
2

Client
3

(b) Client adversary

Figure 3.1: (a) The server adversary who has root access to the server that
provides aggregation service for FL training. (b) The client adversary is
honest-but-curious and can eavesdrop on the communication of other benign
clients.

Methodology | 31

1. The adversary is the platform owner that has root access to the cloud
platform of CSP, including its storage, registers, running processes and
all available resources. Fig. 3.1a illustrates this kind of adversary. It
is also able to control all incoming and outgoing traffics. However,
the attacks that are based on physical control such as the side-channel
attacks like Plundervolt [81] are not considered. This kind of attack
violates the system by abusing physical interfaces such as voltage
scaling interface, changing firmware behaviors like CPU frequency or
voltage and so on, thus it is hard to prevent such kind of attacks unless
the manufacturers can optimize their products. This kind of adversary
is aggressive and one goal of it is to cheat its users by fake claims
or tampered messages, i.e. making the users believe that the model
aggregation is going as they expect but actually the server only partially
or even does not execute the aggregation. It also aims to extract sensitive
information (i.e. local model updates) from the received messages,
memory, or running processes.

2. The adversaries participating in the training collaboration (illustrated
by Fig. 3.1b). The malicious participants (adversaries) have valid
certificates for identity verification and can obtain the keys and
configurations for FL training as benign participants. They are able
to eavesdrop on the channels between the server and all the other
participants. Note that the adversaries are honest-but-curious, which
means that they follow the agreed FL collaboration without intentionally
interfering with it. We assume the adversaries to be honest-but-curious
since the adversaries can also get benefits from the FL collaboration.
They aim to obtain the local models that contain sensitive information
but do not belong to them, violating the data privacy of other parties,
without harming their benefits of FL collaboration or leaking their own
sensitive data.

Considering the variance of conditions and training environments between
the participating parties, it is impossible to provide a general protection
approach for their local training and local datasets in this project. Therefore,
we assume each party to be responsible for its own data security. This project
does not give any special protection against local information leakage that
happens on the participant side, i.e. during the local model training. The
cooperation of participant adversaries is allowed, which means that multiple
malicious participants can cooperate, aiming to obtain the local models of
the benign participants. The worst case is that most but one participant is

32 | Methodology

malicious. However, the cooperation of different types of adversaries is out of
scope for this project, and it is reasonable since this kind of cooperation will
harm the FL training itself, thus violating the assumption of the second kind
of adversary.

3.2 Framework Developing Methods
This section introduces the steps of developing the framework and tools that
are going to be used.

3.2.1 Startup
The work starts on the experimental environment setup. Before deploying the
prototype to TEE hardware, the framework is developed and simply tested on
a VM instance. To simulate the FL process, one virtual distributed system on
a single machine will be leveraged to do experiments.

As mentioned in Section 2.3.3, this project will be based on Flower
framework [82]. Flower is one Python library that supports creating FL
server process and client process separately. Thus, to build the environment
for experiments, firstly we use pipenv [83] to create the virtual Python
environment and install all the dependencies inside it. One benefit is that
pipenv will record all the dependencies in one configure file, making it easy
to reconstruct the same environment on another machine in the future.

After installing the Flower library and all the required dependencies as
well, the next step is to set up the FL training process. We first start with
Pytorch, with which we are the most familiar. According to the tutorials given
by Flower, it is easy to build the server and multiple clients following the steps:

1. Define the training and testing function in the client script.

2. Define the client class, specify the training process in the fit inner
method and the testing process in the evaluate inner method.

3. Define the server class in the server script, using build-in strategies.

4. Run the server in one terminal and run at least two clients in separate
terminals. Then the clients will communicate with the server and start
FL training.

Methodology | 33

3.2.2 Implementing HE
To work efficiently, we plan to do our work on top of existing extensions. As
mentioned in Section 2.3.3, there are some existing HE extensions that could
be combined into the Flower framework easily, just by defining some new
clients and server strategies. However, considering that different HE schemes
have different limitations, i.e. CKKS allows encryption on float values directly
while BFV only supports encryption of integers, some additional functions,
such as quantization or data type converting, are also necessary. And because
each HE library only supports 1 or 2 schemes, it might also need to apply
more than one single extension. In this project, we plan to first apply 1 or 2
extensions to support at least 3 different HE schemes and combine them into
the Flower FL training process.

Although FLASHE extension [59] of FATE is not complete and lacks
the necessary documents, the idea is brilliant and seems not very different
to adjust it to Flower, we also plan to implement it into Flower as a new
extension. However, it might require us to dive into the source code of the
FLASHE extension to extract the core code. BatchCrypt [11] is proved to
be one great approach to accelerate the computation and reduce the size of
encrypted messages for existing HE schemes. If time allows, we also plan to
implement it to see how much it helps to improve efficiency.

3.2.3 Preliminary Tests
Before testing the framework with TI task, it will first be evaluated with some
preliminary tests, which rely on the build-in datasets provided by Flower
framework for testing. These datasets are relatively small and do not take
much time to complete. The purpose is to check if the framework is able to
complete the FL process as expected and if the HE function works well. It is
necessary to optimize the framework until it passes all the preliminary tests.

3.3 Framework Testing
After developing the framework and before deploying it to TEE equipment.
We plan to conduct the tests to figure out its performance only with HE on the
TI problem. The planned test methods are as follows.

34 | Methodology

3.3.1 Planned Test Settings
After developing the framework, the next step is to evaluate its security
performance and efficiency. Although this framework aims to fulfill general
FL tasks, in this project it will only be leveraged to train the model for the TI
problem. The test scenario is set as a HFL where organizations or enterprises
share the information for better collaboration and one central server performs
as the aggregator. Under this scenario, the tests will consider different FL
settings. This project plans to mainly consider three aspects:

1. ML models: The sizes of different models are diverse, thus the
efficiency of computation and communication may be affected as it
takes more time to encrypt large models and the encrypted message
might be larger.

2. FL scale: The number of clients will significantly impact the model
performance and efficiency of HE schemes because the number of
homomorphic operations increases when more clients participate in the
training.

3. HE schemes (if available): By using different HE schemes, the
time cost of encryption/decryption varies a lot. And the sizes of
encrypted messages are also significantly different, causing a difference
in communication cost.

3.3.2 Evaluation Metrics
To evaluate the efficiency and practicality of the framework, this project is
going to consider several metrics:

1. Security Assessment: It is necessary to assess whether the framework
has the ability to defend the threat models defined in Section 3.1.

2. Model Accuracy: The encryption/decryption of HE might add noise
to the model parameters, which could have negative effects on model
performance.

3. Time cost: Since additional security features cause computational
overheads, it is necessary to measure the extra time these features take.

4. TrafficOverhead: After encrypting byHE, the encryptedmessagemight
be larger than the plaintext message, causing a higher communication

Methodology | 35

cost when transmitting it. One efficient way to evaluate this extra
communication cost is to measure the increase in the message size
directly.

3.3.3 Datasets
The dataset we used in this project is one TI dataset provided by CanaryBit
and oneMNIST dataset [84] for the classification of handwriting numbers. By
testing the framework on these two different kinds of datasets, the evaluation
results are more reliable and convincing.

3.3.3.1 TI dataset

The TI dataset includes three sub-datasets that consist of logs from three
different processes: cmd.exe, powershell.exe and winword.exe. The logs are
collected from multiple Windows System devices and combined into these
three sub-datasets. To obtain the dataset from raw log files, there are several
steps:

1. Parse the raw log files into CSV tables.

2. Combine all the CSV files into one single file and do the preprocessing
phase 1, including path normalization and anonymization.

3. Do preprocessing phase 2, including categorization and converting to
numerical values.

After preprocessing the data, we got the dataset that is ready for training
ML models.

3.3.3.2 MNIST dataset

The MNIST dataset [84] is a widely-used ML dataset, which consists of
a total of 70,000 gray-scale images (60000 for training, 10000 for testing)
of handwritten digits from 0 to 9. It is designed for training and testing
general ML models and serves as a benchmark dataset specifically for image
classification tasks. What is more, prevalent ML frameworks like Pytorch or
Tensorflow already have built-in support for this dataset, making it convenient
to run simple tests on it.

36 | Methodology

3.4 Prototype Deployment
The resulting prototype will be deployed and tested in AMD SEV hardware.
In our project, the implementation will rely on x86 platforms accessed using
AWS platform∗.

After deploying, we are going to conduct the evaluation and compare its
performance with the results gained before.

∗AWS SEV-SNP: https://docs.aws.amazon.com/AWSEC2/latest/User
Guide/sev-snp.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html

Framework Design | 37

Chapter 4

Framework Design

This chapter includes a detailed description of system design, improvements,
and algorithms. As the framework combined HE and FL, and is realized
as a plugin on Flower framework [8], the designed framework is named as
Homomorphic Encryption Federated Learning FLower Plugin (Heflp).

The rest of this chapter is organized as follows. Firstly the system
overview and the FL process are introduced in Section 4.1 and 4.2. Section
4.3 explains the supported HE schemes and the modified Flashe scheme
Flashev2. Section 4.4 introduces the quantization and weighted averaging
strategy required for some HE schemes.

4.1 System Overview
The system adopts a client-server architecture (see Fig. 4.1). The client side
consists of multiple client instances each operated by a distinct contributing
party. The server side only represents one server application that runs
on the cloud platform and provides the aggregation service for FL. Each
client maintains one TLS connection with the server and transmits data on
it (explained in Section 2.4).

Each client runs two core components (underlined in Fig. 4.1). The local
training component plays the role of training the received model on the private
local dataset. In this project, we assume that the local training is secure (it will
not leak sensitive data) and the local dataset can only be accessed for local
training. The threat of local information leakage is out of scope and can not
be prevented by this framework. After training, the local model is forwarded to
the HE cipher component. The cipher encrypts the received model from local
training based on a certain HE scheme and then transmits the encrypted data

38 | Framework Design

Party 1

Cloud
Server

Global
Model

Upload
Local Model Download

Global Model

Local Training

Data

Encrypted Local
Models

Aggregator

HE
Encryption

HE
Decryption

Party 2Local training

Data

HE
Encryption

HE
Decryption

Party n

TEE

HE
Cipher

FL Controller

SSL

Figure 4.1: System overview

to the server. Accordingly, it is also responsible for decrypting the received
data from the server using the same HE configuration, then forwarding the
decrypted model parameters to the local training component to trigger the next
round of training.

The server includes one aggregator for aggregating the received model
weights and one FL controller to manage the FL and HE configuration
(underlined in Fig. 4.1). The aggregator receives the encrypted model
updates, aggregates them without learning any sensitive information, and
sends the aggregated result back. The FL controller decides the configuration
parameters that need to be sent to clients, e.g. number of training epochs,
training setting, and context of HE cipher (see more details in Section. 5.1.4).
Another important role of FL controller is to manage FL training, i.e.
instructing the aggregator to use the correct function for specific HE scheme,
collecting and analyzing the evaluation results and deciding if need to continue
training or stop. Both the aggregator and the FL controller are running inside
one TEE to protect the integrity of data and process, which means that any
outside adversary can not manipulate the aggregation process or modify the
input and output of aggregation.

Framework Design | 39

4.2 Federated Learning Process
In this project, the FL process follows the classic HFL pattern explained in
Section 2.3, and enhances the security via additional HE mechanisms. The
designed framework supports multiple HE schemes but follows a similar
procedure. As shown in Fig. 4.2, the process consists of three stages: the
initial setup, FL training and completion.

4.2.1 Stage 1: Initial Setup
The first stage is the initial setup of the framework, including the initialization
of HE cipher and quantizer in each client, setup of clients and the server,
and building the communication channels between clients and the server. In
this stage, the FL controller inside the server also loads an initial model and
generates the corresponding configurations (explained in Section 4.1), then
sends them to all the clients and waits until receiving a predetermined number
of responses from clients. Each client installs the received initial model and
sets up the local training environment according to the received configuration
parameters.

4.2.2 Stage 2: FL Training
The second stage is the main part of FL process. In this stage, all clients
collaborate on training the global model iteratively with the help of the
aggregation server until achieving the convergence of model training or the
maximum number of rounds preset in the initial setup. In each round, each
client first trains the model on its local dataset. Then all local models are
transmitted to the server after being quantized (if required by the HE scheme)
and encrypted. Considering that when using specific HE schemes clients may
also need to send some additional data (see more details in Section. 5.1.3),
e.g. quantization parameters and the range of model weights, an optional
field called metadata is attached as well. After receiving enough updates from
clients, the server aggregates all the received local models and updates the
configuration for each client, then sends back the updated global model to
clients with corresponding configurations. On the client side, each client is
able to obtain the global model by decoding the received message with the
same quantizer and cipher. Before moving to the next round of training, the
server requires a predetermined number of clients to evaluate the performance
of the updated global model and send back the evaluation results so that

40 | Framework Design

Client Server

Initialize cipher
Initialize quantizer

set state READY

Build connection

Wait until connect with
n clients

Pick n' of n clients for training

Send initial (model m, config cfg)

Install initial model
Configure based on cfg

Wait for updates from clients

Initial
Setup

Local training, get mi

Model updates E(mi), training data size zi , metadata mti

Collect model updates from clients
Aggregate model updates

quantize mi , get qmi
cipher.encrypt qmi or mi, get E(mi)

Send updated (model E(m), config cfg) to picked clients

Wait for resp

cipher.decrypt E(m)get m , or qm

unquantize qm , get m

Configure based on cfg

Finish FL training

Close connection

FL
Training
(Might
repeat)

Completion

eval data size zi , eval results rsti
Evaluate on local dataset

Collect and aggregate eval resultsWait for resp

Start next round of training

Pick n'' of n clients for evaluation

cipher.decrypt E(m)get m , or qm

unquantize qm , get m

Configure based on cfg

Send updated (model E(m), config cfg) to picked clients

Start training on the picked clients

Wait for results from clients

Pick n' of n clients for training

Figure 4.2: Federated Training process with Homomorphic Encryption, red
marks mean that these steps are optional and only necessary for some of the
HE schemes

Framework Design | 41

it can collect, record, and analyze such kind of information for monitoring
the training process and making better decision whether to stop training
earlier. The evaluation results can also be helpful for other purposes such
as setting better training configurations and evaluating the effects of different
HE schemes and FL algorithms on convergence speed or global accuracy.
However, it always takes additional time and the users need to evaluate the
trade-off.

4.2.3 Stage 3: Completion
The last stage is to complete training. When the global model is converged
or the training reaches the maximum number of rounds, the server stops and
instructs clients to end the FL process as well.

4.3 Homomorphic Encryption Schemes
This section mainly introduces the HE schemes that this framework
implements. As shown in Table 4.1, there are totally 4 HE schemes
implemented in Heflp: Flashe, Flashev2, CKKS, BFV. All these schemes have
different characteristics and fit different scenarios.

Table 4.1: Supported homomorphic encryption schemes

Scheme Data Type Operation Quantization Dependency
Flashe[6] integer + Require Numpy
Flashev2 integer +, ×L Require Numpy
CKKS[28] float +, × Not require Pyfhel[63]
BFV[27] integer +, × Require Pyfhel

Note: L means constant in Flashev2

4.3.1 Flashe
Flashe [6] follows the idea to design one HE scheme specifically for cross-
silo FL. Considering that current prevalent FL algorithms like FedAvg [1] or
FedProx [47] only require a weighted average operation, there is no demand
for supportingmultiplicative operation for HE in FL. In FL, it is only necessary
for HE scheme to support addition. Because both encryption and decryption
happen only on the client side, the asymmetric design is also redundant.
Therefore, in this context, symmetric design is a more efficient solution,

42 | Framework Design

which uses only one key for both encryption and decryption instead of a key
pair (private key and public key) for encryption and decryption respectively.
Therefore, Flashe is designed as a symmetric HE scheme that only supports
additive homomorphism to accelerate the encryption speed and minimize the
size of the ciphertext. And thanks to the quantization technology, which is able
to rescale a range of real numbers to a range of integers, Flashe is allowed
to only support integer encryption. As shown in Fig. 4.3, the idea is to add
masks of random numbers to the plaintext and record the parameters used for
generating masks during calculation.

+ - =

plaintext 1 mask1
(seed = p1)

Encryption

mask2
(seed = p2) ciphertext 1

(), p1, p2

+ - =

mask1
(seed = p2)

mask2
(seed = p3) ciphertext 2

(), p2, p3

plaintext 2

⊕

ciphertext
sum

(), p1, p3=

- +

mask1
(seed = p2)

mask2
(seed = p3)

=
ciphertext
sum

(), p1, p3

Addition

Decryption

Figure 4.3: An example of Flashe. Use Flashe to calculate the sum of two
pictures securely.

The core cryptosystem consists of encryption and decryption processes.
The encryption process is defined as:

Ek(m) = (c, i, S : {j}),
s.t. cd = (md + Fk(i ∥ j ∥ d)− Fk(i ∥ (j + 1) ∥ d)),

for 1 ≤ d ≤ D

(4.1)

where m ∈ ZD
n is the plaintext that needs encryption and D represent the

length of it. n is the modulus. i, j are two parameters to generate random
masks. In FL i can be the number of rounds while j is the client id. k means
the key and Fk : I → Zn represents a Pseudorandom Function (PRF) that uses
k as the key to map the given value to a random value as a mask.

Framework Design | 43

The additive operation is defined as:

(c1, i, S1)⊕ (c2, i, S2) = (c1 + c2, i, S1 ∪ S2) (4.2)

where the addition consists of two steps: do the modular addition on c1
and c2, and combine the two S sets together.

Accordingly, the decryption is the process of recreating the masks
according to the recorded S set and removing them to get the decrypted result:

Dk((c, i, S : {j1, j2...})) = m,

s.t. md = (cd +
∑
j∈S

(Fk(i ∥ (j + 1) ∥ d)− Fk(i ∥ j ∥ d)),

for 1 ≤ d ≤ D

(4.3)

During decryption, as all the masks should be calculated and removed
from the ciphertext to recover the decrypted result, the calculative overhead
increases with the size of S. So the time complexity is O(ND) where N

is the number of local models that participate in aggregation. One design in
Flashe to reduce such kind of overhead is to carefully generate two masks
when encryption using j and j+1. In this way when adding up the encrypted
model parameters the masks can be canceled by each other, and ideally the
overhead could be reduced to O(D).

When initializing a Flashe cipher, two parameters are required: the key
k for PRF generating the masks and the bit-width that defines the maximum
range of value that Flashe can protect, i.e. Flashe can only hide the values in
range [−2re−1, 2re−1] if bit-width is denoted by re.

4.3.2 Flashev2
Although Flashe is a good HE scheme choice specifically for FL, it still suffers
from some shortcomings:

1. As the rule to set i and j is public and all the clients use the same
key for both encryption and decryption if one malicious user is able
to eavesdrop on and obtain the encrypted models from other benign
users, it can recover the plaintext by using its key. So Flashe scheme
is vulnerable to such an inside attack. We expect to hide i and j from
other clients to enhance the data privacy between clients.

44 | Framework Design

2. Flashe only supports additive operation and does not allow the
multiplication between ciphertext and a constant. Therefore, the
strategy of calculating a weighted average of model parameters relies
on a trick to calculate the multiplication of plaintext and its weight, as
well as the division of the sum of results and weights locally. However,
this will cause a problem of additional computational overhead or a loss
of accuracy for the clients. More details will be explained in Section
4.4 later. It could be more flexible to expand the ability of Flashe
with a feature to support the multiplicative operation of ciphertext and
constant.

To address these problems, we optimized and modified the cryptosystem
of Flashe. The optimizations rely on two ideas: 1. Replace the i and j with a
customized field p and let the server define the S : {p1, p2...} for encryption so
that the S remains private to enhance the privacy between clients. 2. Attach
one t parameter to each item p in S : {(p1, t1), (p2, t2)...}, which specifies
the multiplier when adding the masks to plaintext or removing them from the
ciphertext. The revised version of Flashe is named as Flashev2. Similarly, we
give another example Fig. 4.4 to show the process of Flashev2.

+ =

plaintext 1 mask1
(seed = p1) ciphertext 1

(), {(t1, p1), (t2, p2)} t1× +

mask2
(seed = p2)

t2×

plaintext 2

+

mask1
(seed = p2)

(-t2)× +

mask2
(seed = p3)

t3× +

mask3
(seed = p4)

t4× =

ciphertext 2

()
{(-t2, p2),
(t3, p3),
(t4, p4)}

,

⊕

ciphertext
sum

()=
{(t1, p1),
(t3, p3),
(t4, p4)}

,

=
ciphertext
sum×2

()
{(2t1, p1),
(2t3, p3),
(2t4, p4)}

,

t1×

mask1
(seed = p1)

2t1×

mask2
(seed = p3)

2t3×

mask3
(seed = p4)

2t4×- - -
Decryption

Encryption

Addition

⊗

ciphertext
sum×2

()=
{(2t1, p1),
(2t3, p3),
(2t4, p4)}

,

Constant
Multiplication

L
(e.g. 2)

Figure 4.4: An example of Flashev2. Use Flashev2 to calculate the sum of
two pictures securely.

For the encryption, the definition of encrypted result is modified as:

Framework Design | 45

Ek(m) = (c, S : {(p1, t1), (p2, t2)...}),

s.t. cd = (md +
∑
p,t∈S

t · Fk(p ∥ d)),

for 1 ≤ d ≤ D

(4.4)

During encryption with Flashev2, the generation of masks is fully decided
by the S, which is specified by the server and kept private for each client.
Currently, we use two shuffled lists of client id as p1 and p2 for each client,
e.g. [2, 1, 4, 3] and [4, 2, 3, 1] when having 4 clients. To retain the advantage
of mask self-canceling, t1 is set as 1 while t2 is −1. However, the server
can apply an arbitrary strategy to generate this S for each client, i.e. using a
different method to decide p and t or more p, t pairs. As each mask is added
to the plaintext with a multiplier t, if we set p1 = i ∥ j, t1 = 1 while p2 = i ∥
(j + 1), t2 = −1, Flashev2 will behave the same as Flashe.

By adding the t field as part of each item in S, Flashev2 enables the
multiplicative operation between ciphertext and a constant. The operation is
defined as:

(c, S)⊗ L = (c · L, S.t · L) (4.5)

where the multiplicative operation consists of two steps: do the modular
multiplication on c1 and constant L, and multiply every t in S with L. The
additive operation of ciphertext is the same as Equation 4.2.

The decryption is very similar to the encryption where the only difference
is reversing t to remove the masks:

Dk((c, S : {(p1, t1), (p2, t2)...})) = m,

s.t. md = (cd −
∑
p,t∈S

t · Fk(p ∥ d)),

for 1 ≤ d ≤ D

(4.6)

Flashev2 has the same parameter settings as Flashe, comprising the key k
and bit-width re.

46 | Framework Design

4.3.3 CKKS & BFV
The CKKS scheme [28] is one variant of HE schemes that specifically work on
real and complex numbers. It only supports approximate arithmetic operations
(both additive and multiplicative operations) on encrypted data. So it will give
approximate results of homomorphic operations instead of exact results. The
level of precision is decided by some parameters e.g. polynomial modulus
degree. These parameters impact the computational efficiency as well.

The BFV [27] scheme is another popular HE scheme, which supports the
encryption on integer plaintexts. Unlike CKKS, BFV is able to provide exact
arithmetic operations on encrypted data. There are several parameters like
polynomial modulus degree and plaintext modulus that can trade-off between
precision tolerance, security level, and computational efficiency.

Both CKKS and BFV are FHE schemes that support arbitrary arithmetic
operations on their allowed data types. However, in FL scenario, as the weights
ofMLmodels are real numbers, specifically forBFV it requires first quantizing
them to integers before performing encryption.

This report will not discuss the details of principles of CKKS and BFV
schemes because we mainly care about their application and performance in
the FL scenario and did not do any modification to these two HE schemes.

4.4 Quantization and Weighted Averaging
As discussed before, considering that some HE schemes (BFV, Flashe and
Flashev2) require converting real model weights to integer values before
encryption, it is necessary to implement an appropriate quantization method.
On the other hand, the encrypted ciphertext does not support arbitrary divisive
operation. However, the aggregation needs to perform the weighted averaging
operation on the parameters of local models. Therefore, we need to design one
weighted averaging strategy to realize such an operation. The quantization and
weighted averaging can be mixed together as one calculation strategy, so both
of them are discussed in this section.

4.4.1 Symmetric Quantization
The classic r-bit quantization function Q for range [xmin, xmax] and its
corresponding reverse function are defined as:

Framework Design | 47

Q(x) = [[(2r − 1) · (x− xmin)

(xmax − xmin)
]]

Q−1(qr) = qr ·
(xmax − xmin)

2r − 1
+ xmin

(4.7)

where the [[·]] denotes the rounding function. However, it can not be
applied to the FL process directly because of two weaknesses:

1. Because of the +xmin item in the reverse quantization (or dequan-
tization) function Q−1, when adding n quantized values up, the
dequantization function has to convert to Q−1(qr) = qr · (xmax−xmin)

2r
+

xmin · n, making things complicated as the server need to record the
number n.

2. The quantized value is always larger than 0, so the accumulative result
is easy to overflow during aggregation, especially when the number of
FL clients is large. For example, suppose each client only sends one
model parameter to the server for aggregation, when using the 16-bit
quantization, the range of quantized value q is [0, 216 − 1]. If total 26 =
64 clients participate in aggregation and the weight of every client is
set as 210 = 1024, the weighted additive result can be expressed as
sum =

∑64
i=1 qi ·1024, thus the range of sum is expanded to [0, 232−1].

If the signed integer type is 4 bytes (32 bits), this sum might cause an
overflow problem, which means that the sum result is larger than the
maximum value one integer variable can represent, not to mention the
use of HE scheme that could make the available range narrower. Once
the overflow occurs, it has to restart the calculation to avoid this problem
and cause extra time overhead.

To mitigate these problems, we first turned to the symmetric quantization
method that is used in BatchCrypt [77]. The idea is simple, instead of
quantizing any value into a positive integer, symmetric quantization maps
[−α, 0] and [0, α] to [−(2r−1 − 1), 0] and [0, 2r−1 − 1] separately, so that the
range of quantized values is symmetric. The mapping function is the same as
Equation 4.7 where xmin = 0 and xmax = α:

Qs(x) = Sign(x) · [[(2r−1 − 1) · |x|
α
]]

Q−1
s (qr) = qr ·

α

2r−1 − 1

(4.8)

48 | Framework Design

dqA11=qA1×d1

dqA21=qA2×d2

dqAn1=qAn×dn

qA11=Q(A1)

qA21=Q(A2)

qAn1=Q(An)

qAsum=sum(dqAi)
dsum=sum(di)

Aavg1=Q-1(qAavg)

Aavg1=Q-1(qAavg)

Aavg1=Q-1(qAavg)

qAavg1=qAsum / dsum

qAavg1=qAsum / dsum

qAavg1=qAsum / dsum

Client 1

Client 2

Client n Aggregator

Client Side Client SideServer Side

Quantization Weighted Sum up Averaging Dequantization

(a) Primary weighted averaging

dA11=A1×(d1/m1)

dA21=A2×(d2/m2)

dAn1=An×(dn/mn)

dqA11=Q(dA1)

dqA21=Q(dA2)

dqAn1=Q(dAn)

M=min(mi)
qAsum=sum(dqAi×(mi/M))

dsum=sum(di)

Aavg1=Q-1(qAavg)

Aavg1=Q-1(qAavg)

Aavg1=Q-1(qAavg)

qAavg1=qAsum×M/dsum

qAavg1=qAsum×M/dsum

qAavg1=qAsum×M/ dsum

Client 1

Client 2

Client n

Client Side Client SideServer Side

QuantizationWeighted Sum up Averaging Dequantization

Aggregator

(b) MWAvg

Figure 4.5: (a) Working flow of the primary weighted averaging process. An

denotes model parameter vector of client n and dn denotes the weight of client
n. The total number of clients is n. (b) Working flow of the proposed MWAvg
process, following the definition given by Equation 4.10.

There are several advantages of symmetric quantization compared with
the standard one. Because the xmin = 0, the problem caused by the +xmin

item is solved when calculating the sum. Another main property is that
the values with opposite signs can cancel each other during the aggregation,
making it more robust to overflowing than the standard quantization. However,
only symmetric quantization is not enough when calculating the weighted
averaging result. The following section introduces strategies for weighted
averaging and the challenges.

Recent work shows that it is enough to use 16-bit variables for quantizing
model parameters to retain the accuracy [85]. Therefore, in this project, we
constantly set r=16.

4.4.2 Primary Weighted Averaging Strategy
As discussed before, for those HE schemes that do not support encryption and
operation on real numbers, the primary weighted averaging process can be
divided into three steps: 1. Multiply the quantized local model parameters of
each client with its weight on the client side; 2. Aggregate all the local models
by adding up their parameters on the server side; 3. Divide the sum result by

Framework Design | 49

the sum of weights on the client side and then dequantize to get the final result.
The working flow is shown as Fig. 4.5a.

The reason to quantize the model parameters before multiplying with
weight is that quantization requires the input value to be within the same
range [−α, α] for any client no matter how much weight it performs. The
boundary value α has to be the same among all the clients to guarantee the
correctness of model aggregation. For each client, as the weight is arbitrary,
if firstly multiplying the model parameters with weight, all the clients need to
negotiate the α value before quantization, making it much more complicated
and increasing the communication overhead. However, quantization before
weighting increases the possibility of overflowing as the weight can be an
arbitrary value and frequently change. Suppose r = 216 of quantization and
the weight of one client is the size of the local dataset, which could be much
larger than 210 = 1024. In this case, the dsum can be larger than 216 with a
high possibility (if client number n ≤ 26), making the qAsum easy to overflow
(if the maximum value is 231). Therefore, one challenge of weight averaging
is to handle the arbitrary weights and avoid overflowing when calculating the
sum of model parameters. Another challenge is addressed in one possible case
that weight values are not integers but real numbers.

4.4.3 Improved Weighted Averaging Strategy: MWAvg
To address the challenges, we proposed one advanced weighted averaging
strategy by rescaling its range as early as possible. The proposed strategy is
named as MWAvg.

Considering the formula of weighted averaging is:

qavg =

∑n
i=1 qidi∑n
i=1 di

(4.9)

where qi is the value of client i that participate in weighted averaging and
the qavg is the averaging result. After adding some items to it, we can divide
the qavg into the multiplication of several items:

qavg =

∑n
i=1 qidi∑n
i=1 di

= (
n∑

i=1

qi ·
di
mi

· mi

M
) · M∑n

i=1 di

where mi = 2⌈log2(di)⌉ ∈ [di, 2di)],M = min(mi)

(4.10)

The idea is to first rescale the weight di to range [0, 1] so that the model

50 | Framework Design

parameters can be multiplied with it before quantization, keeping the same
α. As shown in Equation 4.10, we transform weight di into di

mi
. Because

mi = 2⌈log2(di)⌉ ∈ [di, 2di)], di
mi

∈ (0.5, 1], fits our requirement. Considering
that the mi can be different among various clients, we need one mechanism
to generalize it to get the correct result. To achieve this, we modified the
aggregation process on the server side. Instead of simply adding all the
received vectors dqAi up, the server first selects the minimum value among
all mi as M , then calculate the weighted sum of dqAi · mi

M
where mi

M
is the

weight. Everymi is a power of 2, thus mi

M
∈ N and the integer multiplication

is legal. Finally, multiply the sum with the last item M∑n
i=1 di

to get the weighted
averaging result on the client side. According to the Equation 4.10, the final
result should be equal to the result of weighted averaging. The working flow
of MWAvg is shown in Fig. 4.5b.

MWAvg is designed to handle arbitrary weights when aggregating models
using weighted averaging. It splits the weight di into two parts di

mi
and mi

M
and

apply them in different steps. As discussed before, the main negative effects
caused by arbitrary weights are overflowing and difficulty in handling real-
number weights. By using MWAvg these negative effects are significantly
absorbed by mi so that it will not impact the aggregation much. Suppose
the maximum d1 = 100000 and the minimum d0 = 1000, m1 = 217

and m0 = M = 210, respectively. In this case, m1

M
= 27 = 128 and

m0

M
= 1, ensuring the safety of aggregation against overflowing even when

the number of clients is large, i.e. over 100 clients. Intuitively, the second
part of weight mi

M
is approximately the division of di and minimum d. If it is

larger than 100, it means the weights are not set reasonably as some clients
use significantly smaller weights than others and contribute too little to the
FL training. On the other hand, MWAvg works well for real weights. For
float weights, MWAvg works the same as for integer weights, with no need for
any other transformation. However, because the original values are multiplied
by di

mi
∈ (0.5, 1] before quantization, it will result in a maximum 2 times

higher error of quantization if di
mi

→ 0.5 compared to the primary weighted
averaging.

4.4.4 Flashev2+MWAvg
For primary weighted averaging, the HE is applied after quantization and
weighting so that the weight can be multiplied to the plaintext before
encryption. This working flow works fine for CKKS and BFV. However, it
might weaken the security provided by Flashe and Flashev2. Suppose for

Framework Design | 51

client i, the quantized model parameters qAi are 16-bit integers and the weight
is di = 26 = 64, Flashe can directly generate and add 16-bit masks to the
plaintext without weighting. However, after multiplying the quantized values
with the weight di = 26, the range [−(215 − 1), 215 − 1] is also expanded
to [−(215 − 1)26, (215 − 1)26]. If continue using the 16-bit masks, only the
lower 16 bits are protected while the other 6 bits are still plaintext, causing
a security issue. Although it can be fixed by generating masks of more bits,
i.e. the masks should be able to cover the possible range of plaintext values
[−(215 − 1)26, (215 − 1)26], one valid mask will consume at least 21 bits. It is
also very hard to decide how many bits should be used because the weight is
arbitrary and results in larger memory and computational overhead.

Another possible solution is to encrypt before weighting if the weight is
integer, Flashe can use the same 16-bit masks. For Flashe, the multiplication
of ciphertext and integer weight c · d (Flashev2 supports this operation but
Flashe does not) can be transformed as the sum of many ciphertext

∑d
1 c.

But this will break the self-canceling property of Flashe during aggregation
as long as the weights are not exactly the same, significantly increasing the
overhead of decryption as all the accumulated masks need to be removed.
In this case, the more clients that participate in aggregation, the more time
decryption consumes to remove all the masks.

ciphertext, d, m
divide weight

d1=h1×m1 into
h ∈[0,1], m ∈N

plaintext1×h1 Quantization

Client 1

HE
Encryption

Client 2, Client 3 ... 1. M=min(mi)
2. ciphertextavg =
∑ciphertexti×mi/M

3. dsum=∑di
Serverciphertextavg×M

/dsum
Dequantization

Client 1

HE
Decryption

Client 2 Client 3 ...

Rounding

Figure 4.6: Combine MWAvg and HE encryption together.

By using Flashev2 with MWAvg, this issue can be largely mitigated with
nearly no extra overhead. As in the working flow shown in Fig. 4.6, the
quantization is put after weighting, thus Flashev2 can always use the same
number of bits for quantization. Another advantage is provided by the design
of m. As defined in Equation 4.10, all the weights that are located in the

52 | Framework Design

range (2t−1, 2t] are transformed to the samem = 2t. Therefore, as long as the
weights of clients are in the same range, the masks are still able to cancel each
other. However, the worst case is that each client uses a different m. In this
case, the masks can not be canceled and will cause the same time complexity
as the primary weighted averaging discussed before.

Implementation | 53

Chapter 5

Implementation

Following the methodology and design described in Chapter 3, we integrate
the introduced four HE schemes, quantizations, FL training process, and
secure protocols together and developed our framework named Homomorphic
Encryption Federated Learning FLower Plugin (Heflp). Heflp is one Python
module that achieves PPFL by HE based on Flower[4] FL framework.
Currently Heflp enables four HE schemes, as discussed in Section 4.3. What is
more, to make it more usable, Heflp supports both Pytorch∗ and Tensorflow†,
which are two prevalent ML frameworks.

This chapter provides technical details about the structure of Heflp and
its implementation and usage as well. Section 5.1 introduces the submodules
of Heflp respectively while Section 5.2 shows how to use Heflp. Section 5.3
describes the steps to deploy Heflp into clients and TEE server.

5.1 Heflp Submodules
Heflp consists of five submodules, each designed to fulfill specific functions.

5.1.1 heflp.secureproto
This submodule includes all the dependencies of HE ciphers and quantizers.
It consists of two submodules: heflp.secureproto.homoencrypschemes and
heflp.secureproto.quantization.

∗https://pytorch.org/
†https://github.com/tensorflow/tensorflow

54 | Implementation

5.1.1.1 homoencrypschemes

heflp.secureproto.homoencrypschemes contains the ciphers of HE schemes.
In .cypher, a CypherBase class is defined as a paradigm, which includes three
basic methods:

1. encrypt: encrypting the received plaintext and returning the correspond-
ing ciphertext.

2. decrypt: decrypt the ciphertext and return decrypted plaintext.

3. get_seed: get the seed of this cipher and ciphers with the same seed have
the same behavior.

All the other ciphers defined for specific HE scheme inherit from it. Currently,
Heflp has implemented four kinds of ciphers: Flashe, Flashev2, CKKS, and
BFV.

As Flashev2 is one extensional version of Flashe while Flashe can be
considered as one special case of Flashev2 as explained in Section 4.3.2, both
Flashev2 and Flashe have similar cipher design. For both FlasheCypher and
Flashev2 the encrypted message comprises two parts, one Numpy array and
oneFlasheCypherParams object which contains the metadata of the encrypted
message. The encrypting and decrypting processes follow the principle of
Flashe, computing masks and adding them to the plaintext or removing them
for decryption. The seed represents the key of the pseudorandom function
used for mask generating. However, we optimized our proposed Flashev2 to
accelerate mask-generating by leveraging the build-in int16 and int32 data
types, i.e. the speed of generating mask is approximately 2x faster when the
bit-width parameter of Flashev2 is 16 or 32.

Cipher CKKS and BFV are realized by a HE tool called Pyfhel [63]. So
CKKSCypher or BFVCypher is developed as a wrapper of Pyfhel ciphers.
However, as Pyfhel ciphers have a limitation of the maximum size of plaintext
for each round of encryption, the two Heflp ciphers are designed to use Pyfhel
cipher to encrypt plaintext of arbitrary size by splitting it to multiple pieces
before encryption if the size exceeds the maximum limitation. To transmit the
ciphertexts from clients to the server, it is required to transform the ciphertexts
into bytes and transform them back on the server side. Another class
CKKSHelper (or BFVHelper) is developed to handle this kind of transforming
task. The CKKSCypher (or BFVCypher) is only used by clients but the
CKKSHelper (or BFVHelper) is required by both clients and the server.

Implementation | 55

5.1.1.2 quantization

This submodule contains two Python files. quantizer.py defines the symmetric
Quantizer class introduced in Section 4.4.1 while mwavg.py defines the
MWAvgQuantizer class that inherits the Quantizer but enhances its ability by
MWAvg discussed in Section 4.4.3. Besides, as MWAvg requires additional
information m and weight w for each client to be transmitted to the server,
another data class MWAvgParams is defined to store and transform this kind
of information.

5.1.2 heflp.training
This submodule includes the classes and methods for assisting model training.
As the model parameters need to be transformed into a 1D array before quan-
tization and encryption, heflp.training has one method flatten_model_params
to extract parameters from the ML model object and flatten them into one 1D
array and the reverse method unflatten_model_params to apply the flattened
parameters to the given ML model.

To separate model training from other steps, a specific class Runner is
defined to handle model training. To adjust different frameworks (Pytorch
or Tensorflow), different types of the instantiated Runner can be used.
Heflp already implements PytorchRunner and TensorflowRunner to train and
validate the corresponding types of ML models. Besides, one FakeRunner
is provided as well for testing only. FakeRunner will not update the model
parameters but just ”pretend” to train the model. In this way, the model
training can be skipped without changing much code when testing other
functionalities of Heflp, e.g. testing the validity of a new HE scheme, saving
time and making the framework more flexible and extendable.

5.1.3 heflp.client
Heflp provides several client classes for different HE schemes (FlasheClient,
Flashev2Client, BFVClient, CKKSClient), each of which is instantiated with
several arguments, e.g. cipher, quantizer, ML model, runner, and fit epochs
of each round. To keep our realization of Flashe the same as the origin, the
FlasheClient uses the original Flashe scheme and primary weighted averaging
strategy (described in Section 4.4.2). Both Flashev2Client and BFVClient
apply the proposed MWAvg strategy (described in Section 4.4.3).

The heflp.client classes inherit the Flower client class. They define how
to train and evaluate the ML model for each round of FL, HE encryption and

56 | Implementation

decryption processes, and data transmitted to and from the server.
Besides, Heflp also provides a BasicClient that does not implement any

HE scheme and conducts the FL process only. It is used as a baseline, making
it easy to compare the speed and traffic overhead between it and the clients that
have HE enabled.

Each Heflp client follows a similar structure but has its own characteristics,
e.g. the transmitted metadata are various (see Table 5.1).

Table 5.1: Metadata transmitted from clients to server

Client Type Item name Description
Basic None
Flashe flashe_params Flashe params: S and i
Flashev2 mwavg_params MWAvg params:weight w and factorm
CKKS None
BFV mwavg_params Same above

5.1.4 heflp.strategy
Similarly to heflp.client, on the server side, there are multiple strategies
(FlasheStrategy, Flashev2Strategy, BFVStrategy, CKKSStrategy, BasicStrat-
egy), each of which matches a specific HE scheme. One strategy plays two
roles:

1. Aggregator: define how to process the received model updates and
aggregate them.

2. Controller: control the FL training process by storing the state of
training and specify the configurations (see more details in Table 5.2)
sent to each client according to it.

The heflp.strategy classes inherit the Flower strategy class and thus
have many arguments like the minimum number of clients for training, the
minimum number of clients for evaluation, the fraction of clients for each
round of training, etc. By specifying these arguments, the administrator is
able to control the FL training behavior manually.

5.1.5 heflp.utils
This submodule includes the tools used for logging, performance evaluation,
parsing, etc. Heflp uses two kinds of loggers. The first logger is named heflp

Implementation | 57

Table 5.2: Configurations transmitted from server to clients

Client Type Item name Description
Basic 1. epochs_per_round 1. Num of epochs run in this round

Flashe
1. epochs_per_round
2. i
3. j

1. Same above
2. Client id
3. Current round number

Flashev2
1. epochs_per_round
2. flashev2_params
3. mwavg_params

1. Same above
2. Params for mask generation: S
3. MWAvg params: sum of weights andM

CKKS
1. epochs_per_round
2. mwavg_params
3. ckks_context

1. Same above
2. Same above
3. Context for CKKS cipher initialization

BFV
1. epochs_per_round
2. mwavg_params
3. bfv_context

1. Same above
2. Same above
3. Context for BFV cipher initiailization

and used to record general messages, like the beginning and end of each phase,
choices of clients for each round of FL training, etc. The other logger named
heflp-eval mainly focuses on logging the information for evaluation, such as
the time cost of encryption and decryption.

heflp.utils also has tools to make evaluation simpler. For example, we
defined one TimeMarker class for marking the timestamps of actions and
calculating the intervals automatically, making time cost evaluation much
easier.

5.1.6 heflp.info
Besides the submodules introduced above, Heflp also has one info.py file that
contains configuration information of Heflp such as the names of loggers, log
format and level, supported schemes, and ML frameworks.

5.2 Heflp Usage
It is very convenient to use Heflp building the PPFL training on multiple
clients and the TEE server by several lines of code. As shown in Fig. 5.1,
after initializing the server and multiple clients, they will communicate with
each other and the FL training will start automatically.

On the server side, the only thing it needs to do is to initialize a Heflp

58 | Implementation

Model Runner Cipher Quantizer

Create Heflp client

Start Heflp client

Initialization

Client Setup

Start Client

Initialize Heflp strategy

Start Heflp server

Strategy Setup

Start Server

Running ClientRunning Server

Figure 5.1: Usage of Heflp

strategy with customized parameters and pass it to Heflp method start_server
to run the server inside the TEE.

For each client, as discussed in Section 5.1, firstly the users need to
initialize some necessary components. Then pass these components into one
Heflp client and initialize it. Finally, start the client and specify the server
address by using the start_client method provided by Heflp. Then the client
will communicate with the server automatically as long as the server address
is correctly set.

Considering that there are already paradigms of cipher, runner, client, and
strategy, Heflp is easy to be expandedwithmore features. Wewrote README
of guidelines, making it friendly for new users to start as well.

5.3 Deployment
To deploy Heflp, the device should have python (>=3.8) and pip installed. For
the client, the only thing it needs to do is to pull the repository and install the
necessary dependencies. If it is done correctly, Heflp itself should be installed
as a local module as well.

For the server, considering that TEE has a very limited memory resource,
it is necessary to make the installed framework as light as possible to save
memory. Tominimize the memory footprint, we wrote one bash script extract-
server.sh to extract only the necessary submodules and pack them into one
package named heflp-server. Because the server does not train the ML model
but aggregates the model parameters only, all the dependencies like Pytorch
and Tensorflow are not needed and will not be installed on the server. By
avoiding installing these redundant dependencies, we can save memory of
approximately 1.6G. Therefore, to deploy the Heflp to the TEE server, the

Implementation | 59

administrator first runs the bash script on any machine with bash enabled,
then uploads the extracted heflp-server to the server. Finally, install all the
necessary dependencies.

In this project, we already developed one program fl-server with default
settings. The administrator can directly run it inside TEE. It is also very
convenient for users to develop their own program following this example.

60 | Implementation

Results and Evaluation | 61

Chapter 6

Results and Evaluation

This chapter presents the simulation results and conducts the evaluation of the
framework Heflp on them. The evaluation is divided into three steps:

1. Security Assessment: Assess if the framework is able to defend the
adversaries defined in Section 3.1.

2. Performance Evaluation: Evaluate the model performance of FL
with and without HE, aiming to validate that the additional secure
mechanisms do not sacrifice the benefits of model training.

3. Efficiency Evaluation: Evaluate the efficiency loss of Heflp using
different HE schemes and the effects of TEE as well. By considering
various scenarios, this kind of experiment can help choose the most
appropriate setting in light of specific demands.

The security evaluation is discussed in Section 6.1. Section 6.2 presents
the training results and conducts the performance evaluation. Section 6.3
shows the detailed efficiency evaluation.

6.1 Security Assessment
As defined in Section 3.1, there are two adversaries this project considers. The
server adversary has root access to the cloud platform and aims to violate the
code integrity and data confidentiality. The client adversary can eavesdrop
on the communication between the server and other clients. The goal of this
adversary is to obtain the sensitive model parameters of other benign clients.

To defend the server adversary, Heflp mainly relies on the combination
of TEE and HE. Because the aggregation code and the sensitive client model

62 | Results and Evaluation

...

Cloud
Server

Client
1

Client
2

Client
3

Collaboration

Figure 6.1: collusion of the server and client adversaries.

updates are stored and processed in the TEE, whose memory and process are
isolated from outside, even the cloud platform itself can not tamper with the
code running inside and the model updates if it does not have the permission.
By leveraging this property, the integrity of code and data is under protection.
On the other hand, clients use HE cipher to encrypt the model parameters
before sending them to the aggregation server, making the data secure during
the whole process of transmission and aggregation. Therefore, HE guarantees
the data confidentiality. By leveraging TEE and HE together, we thus ensure
both integrity and confidentiality of code and data.

Considering the client adversary, Heflp defends the malicious behavior by
using TLS as well as HE. Any attackers that do not have the key of HE can
not obtain the sensitive data even if they can eavesdrop on the communication
as the model parameters are encrypted by HE. However, considering a more
dangerous adversary that pretends to be a valid client participating in FL like
all the other authenticated and trustworthy clients, HE is not enough because
currently Heflp requires all the clients to use the same key for HE encryption
and decryption. Therefore, if the adversary client obtains the message of
another benign client, it is able to decrypt and get the model parameters of
that victim client using the same HE key. To defend against this kind of
malicious behavior, Heflp implements TLS to enhance the protection of data
confidentiality and integrity during the transmission. TLS is used to establish a
secure communication channel between the server and each client. When they
communicate with each other, the messages are encrypted and a digital digest
(MAC) calculated from the message is attached as a fingerprint to guarantee
the data integrity.

Results and Evaluation | 63

However, the collusion of these two kinds of adversaries is not tackled
by Heflp and can be marked as a limitation of Heflp. If one malicious user
that obtains the private key of HE shares the key to the server (as illustrated
in Fig. 6.1), the server is able to obtain the encrypted data and decrypt it by
the key, violating the data confidentiality. In the current stage, Heflp does not
consider the situation that the server adversary knows the private key used for
HE. Although defending this kind of attack is out of the scope of this project,
we set it as part of our future work.

6.2 Performance Evaluation
HE will cause a loss of result accuracy when conducting operations on
the ciphertexts. The reason is that CKKS can only obtain an approximate
result while other integer HE schemes (Flashe or BFV) require quantization,
resulting in a loss when dequantizing the result. Although ML model
parameters are not sensitive and can tolerate a certain level of loss, it is
still necessary to verify how much this kind of loss will impact the model
performance. In this section, we first measure the error rates of HE schemes
and then get the training curve under different HE settings by simulating the
whole FL process.

6.2.1 Error Rates of HE Schemes
To evaluate the effects of HE schemes on the model training, one experiment
was conducted to measure the error rate of aggregation results caused by
each of the HE schemes that Heflp supports. The experiment follows the
principle that ideally the aggregation results A′

N of PPFL applying HE for
data security should be exactly the same as the results AN of FL without
HE protection under the same setting (N denotes the total number of model
parameters). Therefore, the errors EN can be represented as the difference
between the A′

N and AN , denoted by ||A′
N − AN ||. The collected EN is used

to calculate the error probability distribution while the error rate is simply
defined as the mean value of EN . Considering that the weights of clients will
affect the performance of MWAvg, the experiment is divided into two tests, a
uniform test and a nonuniform test. Because the integer HE schemes (Flashe,
Flashev2, BFV) themselves provide exact accurate results as long as they are
set properly, for these three schemes, quantization becomes the main reason
for the error. Therefore in the two tests, three r-bit quantizations are evaluated

64 | Results and Evaluation

(r = 16/18/20). Theoretically, the more bits used for quantization, the less
the error.

Name Value Description
Model Type CNN The model type used for FL

Model Scale N 50890 The number of model parameters
Client Number 5 Number of clients participating

Client Weights 500, 500, 500,
501, 502 The weight of each client respectively

Table 6.1: The settings of the uniform test

The uniform test sets all the clients equally, thus all clients share
approximately the same weight 500 (as an example, actually any weight value
is valid). In this case, the aggregation can be considered equal to simply
calculating the average result of all received model updates. The detailed
settings of this test are listed in Table. 6.1. The results are shown in Fig. 6.2a.
From the results it is easy to observe that in this uniform setting the three
integer schemes (Flashe, Flashev2, BFV) have almost the same error rate
(the orange line marks) and probability distribution, which is because the
multiplicative factor before quantization is d

m
= 500

29
= 0.977 → 1 (See

more details in Section 4.4.3). When r = 16 the error rate of CKKS is 5
times smaller than the other three. However, the error rates of integer schemes
significantly reduce with the increase of r. The principle is that when r

increases b = 2, the error rate reduces to its 1
2b
, conforming to the quantization

principles we have discussed in Section 4.4.

Name Value Description
Model Type CNN The model type used for FL

Model Scale N 50890 The number of model parameters
Client Number 5 Number of clients participating

Client Weights 1000, 2000, 3000,
4000, 5000 The weight of each client respectively

Table 6.2: The settings of the nonuniform test

The nonuniform test allocates various weights to the clients, i.e. client 1
has the smallest weight of 1000 while client 5 has the largest weight of 5000,
thus the weighted averaging strategy plays an important role in the aggregation
under this setting. The detailed settings are listed in Table. 6.2 and the results
are shown in Fig. 6.2b. Compared to the uniform test, in nonuniform settings,

Results and Evaluation | 65

the error of Flashev2 and BFV increases and is a bit larger than Flashe. It
is brought by the MWAvg strategy as for some weights like 3000 and 5000
the pre-quantization multiplicative factor d

m
is only 0.7 or smaller, causing an

increase of error. As explained in Section 4.4.3 the maximum error rate of
MWAvg is twice that of the primary weighted averaging, according to the test
results. Another observation is that when the scheme is Flashe while r = 20

the error rate is unexpectedly higher than all the others. This outlier indicates
that the aggregation is overflowing. When r = 20 and the sum of weights is
1000 + 2000 + 3000 + 4000 + 5000 = 15000 = 213.87, so the theoretically
maximum value of the sum results is 2(20−1) · 213.87 = 232.87 > 31 using
primary weighted averaging strategy. As we use 32-bit signed integers to
cache the aggregation results, more than half of the values are overflowing
when using Flashe. However, both Flashev2 and BFV that apply MWAvg and
CKKS can mitigate this overflowing problem, conforming to the principles of
MWAvg and its goals explained in Section 4.4.

6.2.2 Training Performance Evaluation
6.2.2.1 Simulation settings

To evaluate the effects of HE mechanisms on the FL training process, two
simulations were run on the MNIST dataset and the TI dataset (see more in
Section 3.3.3). One VM instance with AMD SEV-SNP supported is set as the
FL server while another VM instance simulates three clients. The simulated
clients connect to the server and they set up the FL training process together.
To monitor the training curve, the performance of the global model is recorded
after each round of training. For the test on the MNIST dataset, the model
used for training is a 5-layer Convolutional Neural Network (CNN) model
and the evaluation metric is the accuracy (or Acc) defined as the number
of correct classifications divided by the total number of test samples. The
test on TI dataset uses a Long Short-Term Memory (LSTM) for training and
chooses Mean Squared Error (MSE) as the evaluation metric. What is more,
the centralized training without FL is also run on the client VM in order
to compare the performance between the FL and centralized training. The
detailed simulation settings are shown in Table 6.3.

6.2.2.2 Training Curves and Analysis

After running the simulation, the results of the two tests are shown in Fig. 6.3.
Each kind of FL training is denoted by one mark while the blue dash line

66 | Results and Evaluation

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r V
al

ue
s

1e 5 r=16

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 5 r=18

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 5 r=20

(a) Uniform test

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r V
al

ue
s

1e 5 r=16

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.5

1.0

1.5

2.0

2.5 1e 5 r=18

Flashe Flashev2 CKKS BFV
Encryption Scheme

0.0

0.5

1.0

1.5

2.0

2.5 1e 5 r=20

(b) Nonuniform test

Figure 6.2: (a) The results of the uniform test, where the weights of all clients
are approximately the same. (b) The results of the nonuniform test, where the
weights of clients vary.

Results and Evaluation | 67

0 5 10 15 20 25 30 35 40
Round Number

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
AC

C
on

 Te
st

 D
at

a

FL without HE
FL with BFV
FL with Flashev2
FL with Flashe
FL with CKKS
Centralized Training

(a) Training curve on MNIST dataset

0 2 4 6 8 10
Round Number

0.030

0.035

0.040

0.045

0.050

M
SE

 o
n

Te
st

 D
at

a

FL without HE
FL with BFV
FL with Flashev2
FL with Flashe
FL with CKKS
Centralized Training

(b) Training curve on TI dataset

Figure 6.3: (a) The training curve of the CNN model using metric Acc on
MNIST dataset. (b) The training curve of the LSTMmodel using metric MSE
on TI dataset.

68 | Results and Evaluation

Name Value Description

Model Type MNIST: CNN
TI: LSTM The model type used for FL

Available Clients 3 Number of available clients
Training Clients 2 Number of active clients per round
Quantization Bit 16 r-bit for quantization

Training Rounds MNIST: 40
TI: 10 Number of FL training rounds

Epochs per Round MNIST: 2
TI: 5 How many epochs are trained per round

Learning rate MNIST: 0.01
TI: 0.001 The learning rate for model training

Metrics MNIST: Acc
TI: MSE The metrics used for evaluation

Table 6.3: Settings for the simulation of FL on MNIST or TI dataset.

shows the curve of centralized training. The test results of FL are scattered
because the global model is updated only after a round of training, which
comprises more than one training epoch, and its performance is evaluated
after the aggregation of every round. However, for centralized training, the
model is evaluated after each training epoch, making the evaluation more
consistent. From the curves, it is clear that for both FL training on the MNIST
dataset and TI dataset, the model has a similar evaluation result no matter
if it applies HE and which HE scheme is used. This observation confirms
that under the settings given by Table 6.3 the HE security mechanisms do
not sacrifice the benefits of FL training, and the model can still retain its
performance with the protection of HE. Besides, we can find that the FL
training has a slower convergence speed compared to the centralized training.
There are several reasons. For instance, the aggregation algorithm we used is
the classic FedAvg and the convergence speed can be increased by using more
advanced algorithms (like FedProx) for specific use cases. On the other hand,
the training parameters like optimizer, learning rate and epochs per round have
not been carefully adjusted. The task itself also affects the model convergence,
i.e. the FL training on the TI dataset converges soon while the FL training
on the MNIST dataset takes many more rounds. However, in this work, we
do not concentrate on improving the performance of FL but on validating the
practicality of the security mechanism based on HE and TEE.We believemore
advanced FL methods can boost the model performance and it can be marked

Results and Evaluation | 69

as one future work to combine our framework with other FL algorithms.

6.3 Efficiency Evaluation
Besides the ML training performance, it is also critical to evaluate the
efficiency of the supported HE schemes in various settings since different HE
security settings have their own characteristics and perform differently. This
section discusses the evaluation results and corresponding analysis first. Then
a comparison of the pros and cons of the HE schemes is given so that users can
have some evidence to trade off and select proper security settings according
to their specific demands.

6.3.1 Evaluation Settings and Metrics
Because of the constraint of VM resources, it is impossible for us to simulate
many clients with full functionalities, i.e. if simulating 10 clients for the whole
FL training, there will not be enough running memory and computational
resources to run all the client processes in parallel. In the setting of this
evaluation, the clients do not train the models locally but do the encryption and
decryption only. As this evaluation does not care about the model performance
of FL while the validity of HE protection has been proved in Section 6.2, it
is reasonable to skip the local training part to save time and resources. And
other operations (e.g. quantization, encryption, aggregation, and so on) are
unchanged. The FL training will not impact their efficiency as well, as long
as the quantization and HE encryption parameters are configured to avoid the
overflowing problem.

To evaluate the efficiency of different HE schemes, the average time costs
of encryption and decryption of one client and the aggregation are recorded
respectively. The sizes of the ciphertexts are collected as well. The ciphertext
size can not only indicate the memory overhead but also represent the traffic
overhead because the ciphertext is the major content of transmitted messages.
By collecting information of the time overhead andmemory overhead, it is able
to measure the time and spatial efficiency under various settings reasonably.

When conducting the experiments for various scenarios, three main
aspects of use cases are considered:

1. Model Type: three types of ML models of different scales are selected
for experiments. They are a 5-layer CNN (50890 parameters), A
LSTM model (220355 parameters), and a ResNet18 model (11689512

70 | Results and Evaluation

parameters). The scale of the model impacts both the time overhead
of encryption and aggregation and the traffic overhead because a larger
model always results in a larger ciphertext and requires more time for
encryption. What is more, the aggregation will also comprise more
homomorphic operations, thus its time cost is higher as well.

2. Number of clients: As this project only considers a cross-silo scenario
where the number of clients is limited (See more in Section 3.1), we
conduct our experiments when client number is 2 / 5 / 10 / 20. The
total number of clients can impact the efficiency of aggregation as the
more clients participating per round, the more model updates need to be
aggregated. However, it does not affect the efficiency of HE encryption
and decryption and the traffic overhead as long as using the same HE
scheme and model.

3. Weights of clients: The weights can influence MWAvg and therefore
have a relatively big impact on the performance of the Flashev2 scheme
(As explained in Section 4.4.4). In the experiments, two kinds of
weight patterns are considered as what we set before in the performance
evaluation: the uniform setting where all the clients share the same
weight (1000) and the nonuniform setting where the weights of different
clients vary (in [1000, 5000]).

6.3.2 Time Efficiency Test of Uniform pattern
This test aims to evaluate the effects of the number of clients and their weights,
thus we fixed the model type as LSTM. Two batches of test units are done
according to the uniform or nonuniform weight patterns. In the uniform
pattern, all the clients are set to the same weight 1000, thus the aggregation is
to simply calculate the average of all the model updates. The results in Fig. 6.4
show that the time overheads of HE schemes differ very much. Comparing the
total time costs, the Flashe has the highest time cost when the clients are few
but CKKS becomes themost time-consuming choice when there are more than
10 clients. The total time cost of Flashe and Flashev2 almost remains the same
no matter the number of clients but for CKKS and BFV the more clients the
higher the total time cost. By analyzing the composition of the time cost of
each HE scheme, we can find that Flashe and Flashev2 almost spend no time
to aggregation while the time cost of aggregation of CKKS and BFV increases
with the increasing of clients, causing higher total time cost. As explained in
Section 4.3, CKKS and BFV have a shortcoming in that they take much time

Results and Evaluation | 71

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Number of Clients: 2
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Number of Clients: 5
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

Number of Clients: 10
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Number of Clients: 20
Encryption
Calculation
Decryption
Total

Figure 6.4: Results of the time efficiency test when all the clients have the
same weight 1000. The time costs of encryption, decryption, and aggregation
(calculation) are recorded while the total time cost is the sum of three,
representing the total time cost of one client.

72 | Results and Evaluation

to execute homomorphic operations when aggregating model updates, which
is the reason for the increase in time cost. However, Flashe and Flashev2 only
sum up the received model updates without any additional computational cost,
thus significantly saving the time of aggregation. Although they consume a
relatively longer time for encryption and decryption, the advantage becomes
obvious when the number of clients is large, especially for Flashev2.

The Flashev2 is developed based on the original version of Flashe and we
optimized the code to accelerate the mask-generating when the bit width of
Flashev2 is set to 16 or 32. As explained in 4.4.4, Flashe requires more bits
for encryption but Flashev2 does not. Therefore, the mask-generating speed
of Flashev2 is much higher than Flashe. According to the cryptosystem of
Flashev2, when the weights of all clients are the same, most of the generated
masks can be canceled by each other, making decryption efficient. We can also
observe that BFV takes less time than CKKS. However, in this project, we did
not dive much into the principles of these two schemes. One reason could
be that BFV is an integer HE scheme while CKKS needs more complicated
operations to calculate the weighted average results of the encrypted real-
number model updates.

6.3.3 Time Efficiency Test of Nonuniform Pattern
In the nonuniform pattern, the weight of each client is selected from the range
[1000, 5000], which influences the weighted averaging during aggregation.
From the results shown in Fig. 6.5 and compare it with the uniform pattern, we
can get the same observation that Flashe and Flashev2 still have the property
to avoid the increase of time cost when there are more clients, but BFV and
CKKS do not have such an advantage. In the nonuniform pattern, BFV is still
faster than CKKS in all cases which is mainly because BFV spends much less
time on aggregation than CKKS. What is more, Flashe can retain the same
efficiency when weights become nonuniform but Flashev2 is much slower
than the case where weights are uniform. From the figure, it is clear that the
encryption and decryption of Flashe have approximately the same time cost no
matter if the client weights are uniform, which is because the client weights do
not impact the Flashe mask-canceling mechanism. But for Flashev2 the mask-
canceling can be impacted when the weights are significantly different, i.e. if
for client i and i + 1, the MWAvg multiplicative factor mi ̸= mi+1, then the
Flashev2 masks can not be canceled by each other, causing a higher time cost
of decryption than encryption (See more details in Section 4.4.4). However,
even in this nonuniform pattern, Flashev2 is still able to gain a lower time cost

Results and Evaluation | 73

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Number of Clients: 2
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Number of Clients: 5
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

Number of Clients: 10
Encryption
Calculation
Decryption
Total

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Number of Clients: 20
Encryption
Calculation
Decryption
Total

Figure 6.5: Results of the time efficiency test when the weights of clients are
in range [1000, 5000].

74 | Results and Evaluation

than Flashe, making Flashev2 more competitive.

6.3.4 Time Efficiency Test of Model Types
To evaluate the effects of model scales on the time costs, three types of models
are tested and we set the number of clients to 5 and the nonuniform pattern of
weights. The evaluation results are shown in Fig. 6.6.

The models we tested are a 5-layer CNN model, an LSTM model, and
a ResNet18 model. Only considering the parameter numbers, the ResNet18
model is about 53 times larger than the LSTMmodel, while the LSTMmodel is
about 4 times larger than the CNNmodel. From the results, the total time costs
of each HE scheme also have approximately the same proportions. Therefore,
we argue that there is a linear relationship between the time cost and the
number of model parameters, which applies to all HE schemes.

From Fig. 6.6 we can also observe that the three histograms look very
similar. Although the time cost significantly differs when the tested model
is changed, the relative values of time costs between HE schemes have the
same form, which confirms that the time cost of HE schemes follows the same
principle no matter which model is used.

6.3.5 Memory Overhead Test
To evaluate the memory overheads of the 4 HE schemes, we collected the
byte data of models when transmitting to the server and compared them to
the model without HE. The evaluation of memory overheads of the 4 HE
schemes and the comparison to the model without HE are shown in Fig. 6.7.
From the three histograms of models of different scales, we can observe that
Flashe and Flashev2 can significantly save memory resources compared to
CKKS and BFV. As introduced in Section 4.3, Flashe and Flashev2 add masks
directly to the plaintext and thus do not increase the size of ciphertext, but the
encryption of BFV and CKKS relies on complex cryptography primitives to
support homomorphic operations, making a ciphertext about 32 times larger
than the plaintext. Therefore, we argue that Flashe and Flashev2 are over 30
times more spatial-efficient than BFV and CKKS. What is more, this test also
shows that BFV and CKKS are not good choices when there are many active
clients and the model scale is big, as the cloud server may not have enough
memory to cache all the received encrypted model updates, raising the risk of
program crashes.

Note that the overhead of Flashev2 is slightly different from Flashe and the

Results and Evaluation | 75

Flashe Flashev2 CKKS BFV
Scheme

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ti
m

e
(s

)

Number of Clients: 5
Encryption
Calculation
Decryption
Total

(a) CNN

Flashe Flashev2 CKKS BFV
Scheme

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Number of Clients: 5
Encryption
Calculation
Decryption
Total

(b) LSTM

Flashe Flashev2 CKKS BFV
Scheme

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

Number of Clients: 5
Encryption
Calculation
Decryption
Total

(c) ResNet18

Figure 6.6: Results of the time efficiency test for three models: CNN (50890
parameters), LSTM (220355 parameters), ResNet18 (11689512 parameters).

76 | Results and Evaluation

None Flashe Flashev2 CKKS BFV
Scheme

0

1

2

3

4

5

6

7

8

Tr
af

fic
 o

ve
rh

ea
d

(M
B)

0.237 0.237 0.236

8.001 8.0
Model Type: cnn

None Flashe Flashev2 CKKS BFV
Scheme

0

5

10

15

20

25

Tr
af

fic
 o

ve
rh

ea
d

(M
B)

0.841 0.841 0.841

27.003
28.002

Model Type: lstm

None Flashe Flashev2 CKKS BFV
Scheme

0

200

400

600

800

1000

1200

1400

Tr
af

fic
 o

ve
rh

ea
d

(M
B)

42.655 42.655 42.666

1365.147 1366.074
Model Type: resnet18

Figure 6.7: Results of the memory overhead test for three models: CNN
(50890 parameters), LSTM (220355 parameters), ResNet18 (11689512
parameters). None means the original size of the model without using any
HE scheme

Results and Evaluation | 77

original model, which is because when developing Flashev2 we used another
encoding tool to transform the model into bytes.

6.3.6 HE Efficiency Comparison
After conducting the tests for both time and spatial efficiencies, we
summarized the pros and cons of all the four HE schemes in the context of
FL training:

1. Flashe: According to our experimental results, Flashe does not have
obvious advantages compared to the other three schemes. But for some
special cases where both the weights and the number of clients are small,
e.g. weights are integers and smaller than 210 = 1024 while clients
are fewer than 26 = 64, Flashe achieves a stable performance as it is
not weight-sensitive while retaining a high level of spatial efficiency.
However, it is not fast and therefore not a good choice for latency-
sensitive applications, and we mark it as our future work to accelerate it
by optimizing the code or parallel computing.

2. Flashev2: It has a good time and spatial efficiency especially when the
client number is big. What is more, it can work well in wide scenarios as
it supports arbitrary weights and more than one hundred clients, which
is enough to cover all the cross-silo FL scenarios that we considered in
this project. However, Flashev2 might suffer from a longer decryption
time if the weights of clients vary in a wide range.

3. CKKS: As CKKS has neither the time efficiency nor spatial efficiency
advantage, it should not be chosen unless there is a special reason, i.e.
requires the real-number calculation without quantization or complex
multiplicative operations, which might be needed in the future when we
apply other FL aggregation algorithms to Heflp.

4. BFV:Based on the time efficiency tests, BFV has the advantage of short
execution time when clients are few (<10 in our experiments), and this
advantage becomes obvious when the model scale is big. And similar to
Flashev2, the client weights do not influence the performance of BFV as
well. However, the high memory overhead and the significant increase
in time cost with the increasing of clients weaken its application.

78 | Results and Evaluation

Conclusions and Future Work | 79

Chapter 7

Conclusions and Future Work

In this project, we design and develop one PPFL framework powered by HE
and TEE named Heflp, and conduct a series of evaluations. We not only
implement three existing HE schemes (Flashe, CKKS, and BFV) but also
develop our own Flashe version 2 (Flashev2), achieving a higher flexibility,
robustness, and execution speed with the combination of an improved
weighted averaging strategy (MWAvg). The practicality of Heflp is proved
by simulating the FL training process on the TI dataset and MNIST dataset
and evaluating its security and performances correspondingly, which shows
that Heflp is able to protect both data confidentiality and integrity during the
whole lifecycle of FL training from the predefined adversaries while retaining
the time and spatial efficiency if appropriate HE schemes are chosen.

7.1 Discussion
In this project, we have a strict assumption of the threat model, assuming
adversaries can happen on both the server and client side, which leads to our
solution Heflp to implement TEE and HE together to secure FL process. If
using a looser threat model, i.e. considering only one kind of adversary, it is
possible to apply simpler solutions. For instance, if the TEE is trustworthy,
which means that it can provide full protection of data confidentiality and
integrity, and all the clients trust the CSP providing FL aggregation service
inside the TEE, HE is not necessary. It might be achieved in the future,
requiring the TEE hardware manufacturers to improve their products and new
designs to a higher security level. If all the clients’ validity can be verified,
some other strategies can be feasible as well. One possible solution to retain
data integrity without TEE is to let a group of clients act as aggregators

80 | Conclusions and Future Work

and compare their aggregated results. If all the aggregated global models
are the same, it indicates that the aggregation is correctly done. However,
this approach requires clients to be honest while suffering from much higher
time and computational overhead. In one word, when considering looser
threat models, it is possible to use TEE or HE only for privacy protection.
Nevertheless, discussing details of these possible alternatives is out of the
scope of this project.

Besides, because of the limitation of time and resources, we did not
conduct a deep work on TEE itself, i.e. we integrate TEE into our framework
to provide stronger security guarantee while focusing on its application and
deployment only, without discussing its hardware principle and technical
details. We set it as one future work to explore more about various TEE
products and their characteristics, which can potentially help to improve Heflp.

7.2 Future Work
In the future, some new features and optimizations are expected to be
considered, aiming to mitigate the existing security vulnerabilities of Heflp
explained in Section 6.1, accelerating the execution speed and expanding its
functionalities.

Right now Heflp is still vulnerable to the complex attacks caused by the
sharing key used for HE schemes. We plan to develop another version of
Flashe (Flashev2) to support each client using its unique key for encryption,
providing a higher level of protection against the risk of leaking keys.

What is more, Flashe and Flashev2 are realized by Python, which is not
an efficient programming language, making them not run as fast as we expect.
Therefore, one future work can be to rewrite (part of) the code in C language
and pack them as one module. In this way, the running speed is expected to
be accelerated by several times.

Another potential feature is to develop an automatic script to detect and
select the proper HE scheme before starting the FL training to achieve the
highest efficiency while saving memory resources.

To expand the ability of Heflp and adjust it to fit more FL scenarios, we
expect to develop and implement more FL algorithms (like FedProx) and HE
schemes to it. In addition, developing templates to leverage Heflp build-in
classes and tools can also be promising and helpful since future programmers
can develop their own features with the templates for their own needs.

References | 81

References

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. PMLR, Apr.
2017, pp. 1273–1282, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html [Pages 1, 14,
15, 16, and 41.]

[2] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza,
“AccTEE: A WebAssembly-based Two-way Sandbox for Trusted
Resource Accounting,” in Proceedings of the 20th International
Middleware Conference. Davis CA USA: ACM, Dec. 2019. doi:
10.1145/3361525.3361541. ISBN 978-1-4503-7009-7 pp. 123–135.
[Online]. Available: https://dl.acm.org/doi/10.1145/3361525.3361541
[Page 1.]

[3] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution
Environment: What It is, and What It is Not,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, Aug. 2015. doi: 10.1109/Trust-
com.2015.357 pp. 57–64. [Page 1.]

[4] A. Muñoz, R. Ríos, R. Román, and J. López, “A survey on the
(in)security of trusted execution environments,” Computers & Security,
vol. 129, p. 103180, Jun. 2023. doi: 10.1016/j.cose.2023.103180.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167
404823000901 [Page 2.]

[5] C. Fontaine and F. Galand, “A Survey of Homomorphic Encryption
for Nonspecialists,” EURASIP Journal on Information Security, vol.
2007, pp. 1–10, 2007. doi: 10.1155/2007/13801. [Online]. Available:
http://jis.eurasipjournals.com/content/2007/1/013801 [Pages 2 and 11.]

https://proceedings.mlr.press/v54/mcmahan17a.html
https://dl.acm.org/doi/10.1145/3361525.3361541
https://linkinghub.elsevier.com/retrieve/pii/S0167404823000901
https://linkinghub.elsevier.com/retrieve/pii/S0167404823000901
http://jis.eurasipjournals.com/content/2007/1/013801

82 | References

[6] Z. Jiang, W. Wang, and Y. Liu, “FLASHE: Additively Symmetric
Homomorphic Encryption for Cross-Silo Federated Learning,” Sep.
2021, arXiv:2109.00675 [cs]. [Online]. Available: http://arxiv.org/abs/
2109.00675 [Pages 2, 13, 18, 25, 29, and 41.]

[7] “FederatedAI/FATE,”Apr. 2023, original-date: 2019-01-24T10:32:43Z.
[Online]. Available: https://github.com/FederatedAI/FATE/blob/94326
15a9a8957dc2afda3363e32c8b9dfd3c963/doc/tutorial/ipcl_tutorial.md
[Pages 5 and 18.]

[8] “Flower: A Friendly Federated Learning Framework,” Mar. 2023,
original-date: 2020-02-17T11:51:29Z. [Online]. Available: https:
//github.com/adap/flower [Pages 5, 18, and 37.]

[9] G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma,
I. Davidyuk, I. Trushkin, M. Radionov, A. Mokrov, D. Agapov,
J. Martin, B. Edwards, M. J. Sheller, S. Pati, P. N. Moorthy, S.-h.
Wang, P. Shah, and S. Bakas, “OpenFL: An open-source framework for
Federated Learning,” Physics in Medicine & Biology, vol. 67, no. 21, p.
214001, Nov. 2022. doi: 10.1088/1361-6560/ac97d9 ArXiv:2105.06413
[cs]. [Online]. Available: http://arxiv.org/abs/2105.06413 [Page 5.]

[10] “TensorFlow Federated.” [Online]. Available: https://www.tensorflow
.org/federated [Pages 5 and 18.]

[11] C. Zhang, “batchcrypt,” Mar. 2023, original-date: 2020-05-
27T10:01:04Z. [Online]. Available: https://github.com/marcoszh/
BatchCrypt [Pages 5, 19, and 33.]

[12] “White Papers & Reports – Confidential Computing Consortium.”
[Online]. Available: https://confidentialcomputing.io/resources/white-p
apers-reports/ [Page 9.]

[13] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable Fully
Homomorphic Encryption,” Feb. 2023, arXiv:2301.07041 [cs].
[Online]. Available: http://arxiv.org/abs/2301.07041 [Pages 9 and 13.]

[14] M. Pei, H. Tschofenig, D. Thaler, and D. Wheeler, “Trusted Execution
Environment Provisioning (TEEP) Architecture,” Internet Engineering
Task Force, Internet Draft draft-ietf-teep-architecture-19, Oct. 2022,
num Pages: 38. [Online]. Available: https://datatracker.ietf.org/doc/dra
ft-ietf-teep-architecture [Page 9.]

http://arxiv.org/abs/2109.00675
http://arxiv.org/abs/2109.00675
https://github.com/FederatedAI/FATE/blob/9432615a9a8957dc2afda3363e32c8b9dfd3c963/doc/tutorial/ipcl_tutorial.md
https://github.com/FederatedAI/FATE/blob/9432615a9a8957dc2afda3363e32c8b9dfd3c963/doc/tutorial/ipcl_tutorial.md
https://github.com/adap/flower
https://github.com/adap/flower
http://arxiv.org/abs/2105.06413
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://github.com/marcoszh/BatchCrypt
https://github.com/marcoszh/BatchCrypt
https://confidentialcomputing.io/resources/white-papers-reports/
https://confidentialcomputing.io/resources/white-papers-reports/
http://arxiv.org/abs/2301.07041
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture

References | 83

[15] S. Pereira, D. Cerdeira, C. Rodrigues, and S. Pinto, “Towards a
Trusted Execution Environment via Reconfigurable FPGA,” Jul. 2021,
arXiv:2107.03781 [cs]. [Online]. Available: http://arxiv.org/abs/2107.0
3781 [Page 9.]

[16] T. Geppert, S. Deml, D. Sturzenegger, and N. Ebert, “Trusted
Execution Environments: Applications and Organizational Challenges,”
Frontiers in Computer Science, vol. 4, 2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741
[Page 10.]

[17] “Intel® Software Guard Extensions.” [Online]. Available: https:
//www.intel.com/content/www/us/en/developer/tools/software-guard-e
xtensions/overview.html [Page 10.]

[18] “AMD Secure Encrypted Virtualization (SEV).” [Online]. Available:
https://www.amd.com/en/developer/sev.html [Page 10.]

[19] A. Ltd, “Cortex-A�TrustZone – Arm®.” [Online]. Available: https:
//www.arm.com/ja/technologies/trustzone-for-cortex-a [Page 10.]

[20] D. Kaplan, “AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More.” [Pages 10 and 11.]

[21] R. Guanciale, N. Paladi, and A. Vahidi, “SoK: Confidential Quartet
- Comparison of Platforms for Virtualization-Based Confidential
Computing,” in 2022 IEEE International Symposium on Secure and
Private Execution Environment Design (SEED), Sep. 2022. doi:
10.1109/SEED55351.2022.00017 pp. 109–120. [Pages 10 and 11.]

[22] M. Li, Y. Zhang, K. Li, Y. Cheng, and H. Wang, “CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the Ciphertext
Side Channel.” [Page 11.]

[23] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,”
ACM Computing Surveys, vol. 51, no. 4, pp. 79:1–79:35, 2018. doi:
10.1145/3214303. [Online]. Available: https://doi.org/10.1145/3214303
[Pages 12 and 13.]

[24] R. VF and L. J, “An Overview on Homomorphic Encryption
Algorithms,” 2018. [Online]. Available: https://www.ic.unicamp.br/~r
eltech/PFG/2018/PFG-18-28.pdf [Page 12.]

http://arxiv.org/abs/2107.03781
http://arxiv.org/abs/2107.03781
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.amd.com/en/developer/sev.html
https://www.arm.com/ja/technologies/trustzone-for-cortex-a
https://www.arm.com/ja/technologies/trustzone-for-cortex-a
https://doi.org/10.1145/3214303
https://www.ic.unicamp.br/~reltech/PFG/2018/PFG-18-28.pdf
https://www.ic.unicamp.br/~reltech/PFG/2018/PFG-18-28.pdf

84 | References

[25] M. Babenko, A. Tchernykh, E. Golimblevskaia, L. B. Pulido-
Gaytan, and A. Avetisyan, “Homomorphic Comparison Methods:
Technologies, Challenges, and Opportunities,” in 2020 International
Conference Engineering and Telecommunication (En&T), Nov. 2020.
doi: 10.1109/EnT50437.2020.9431252 pp. 1–5. [Page 12.]

[26] C. Gentry, S. Halevi, and N. P. Smart, “Better Bootstrapping in Fully
Homomorphic Encryption,” in Public Key Cryptography – PKC 2012,
ser. Lecture Notes in Computer Science, M. Fischlin, J. Buchmann,
and M. Manulis, Eds. Berlin, Heidelberg: Springer, 2012. doi:
10.1007/978-3-642-30057-81.ISBN978− 3− 642− 30057− 8pp.1−
−16. [Page 12.]

[27] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” 2012, report Number: 144. [Online]. Available: https:
//eprint.iacr.org/2012/144 [Pages 12, 41, and 46.]

[28] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Advances in Cryptology –
ASIACRYPT 2017, ser. Lecture Notes in Computer Science, T. Takagi and
T. Peyrin, Eds. Cham: Springer International Publishing, 2017. doi:
10.1007/978-3-319-70694-815.ISBN978 − 3 − 319 − 70694 − 8pp.409 −
−437. [Pages 12, 41, and 46.]

[29] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-Precision
Bootstrapping of RNS-CKKS Homomorphic Encryption Using Optimal
Minimax Polynomial Approximation and Inverse Sine Function,” in Advances
in Cryptology – EUROCRYPT 2021, ser. Lecture Notes in Computer Science,
A. Canteaut and F.-X. Standaert, Eds. Cham: Springer International
Publishing, 2021. doi: 10.1007/978-3-030-77870-522.ISBN978−3−030−
77870− 5pp.618−−647. [Page 12.]

[30] E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, “Optimization of Homomorphic
Comparison Algorithm on RNS-CKKS Scheme,” 2021, report Number:
1215. [Online]. Available: https://eprint.iacr.org/2021/1215 [Page 12.]

[31] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT
’99, J. Stern, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, vol. 1592, pp. 223–238. ISBN 978-3-540-65889-4 Series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/3-540-48910-X_16 [Page 12.]

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2021/1215
http://link.springer.com/10.1007/3-540-48910-X_16

References | 85

[32] M. Gaid and S. Salloum, “Homomorphic Encryption,” May 2021. doi:
10.1007/978-3-030-76346-656.ISBN978− 3− 030− 76345− 9[Page 13.]

[33] A. Bhattacharya, “Homomorphic Encryption - Basics,” Dec. 2020. [Online].
Available: https://34.237.61.189/introduction-to-homomorphic-encryption/
[Page 13.]

[34] M. Kara, A. Laouid, M. Hammoudeh, A. Bounceur, and L. Laboratory,
“One Digit Checksum for Data Integrity Verification of Cloud-executed
Homomorphic Encryption Operations.” [Page 13.]

[35] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated Learning: A
Survey on Enabling Technologies, Protocols, and Applications,” IEEE Access,
vol. 8, pp. 140 699–140 725, 2020. doi: 10.1109/ACCESS.2020.3013541
Conference Name: IEEE Access. [Pages 14, 15, and 16.]

[36] N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni,
S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein, S. Ourselin,
M. Sheller, R. M. Summers, A. Trask, D. Xu, M. Baust, and M. J.
Cardoso, “The future of digital health with federated learning,” npj Digital
Medicine, vol. 3, no. 1, pp. 1–7, Sep. 2020. doi: 10.1038/s41746-020-00323-
1 Number: 1 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41746-020-00323-1 [Page 15.]

[37] A. Alferaidi, K. Yadav, Y. Alharbi, W. Viriyasitavat, S. Kautish, and
G. Dhiman, “Federated Learning Algorithms to Optimize the Client and
Cost Selections,” Mathematical Problems in Engineering, vol. 2022, p.
e8514562, Apr. 2022. doi: 10.1155/2022/8514562 Publisher: Hindawi.
[Online]. Available: https://www.hindawi.com/journals/mpe/2022/8514562/
[Page 15.]

[38] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” Jan. 2023, arXiv:1602.05629 [cs]. [Online]. Available: http:
//arxiv.org/abs/1602.05629 [Page 15.]

[39] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” Nov. 2017,
arXiv:1711.10677 [cs]. [Online]. Available: http://arxiv.org/abs/1711.10677
[Page 15.]

https://34.237.61.189/introduction-to-homomorphic-encryption/
https://www.nature.com/articles/s41746-020-00323-1
https://www.hindawi.com/journals/mpe/2022/8514562/
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1711.10677

86 | References

[40] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A Federated
Transfer Learning Framework for Wearable Healthcare,” IEEE Intelligent
Systems, vol. 35, no. 4, pp. 83–93, Jul. 2020. doi: 10.1109/MIS.2020.2988604
Conference Name: IEEE Intelligent Systems. [Page 15.]

[41] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated Reinforcement
Learning: Techniques, Applications, and Open Challenges,” Oct. 2021,
arXiv:2108.11887 [cs]. [Online]. Available: http://arxiv.org/abs/2108.11887
[Page 15.]

[42] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing Federated Learning
on Non-IID Data with Reinforcement Learning,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, Jul. 2020. doi:
10.1109/INFOCOM41043.2020.9155494 pp. 1698–1707, iSSN: 2641-9874.
[Page 15.]

[43] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communication
Efficiency,” Oct. 2017, arXiv:1610.05492 [cs]. [Online]. Available: http:
//arxiv.org/abs/1610.05492 [Page 15.]

[44] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, Jun. 2020. doi:
10.1038/s42256-020-0186-1 Number: 6 Publisher: Nature Publishing Group.
[Online]. Available: https://www.nature.com/articles/s42256-020-0186-1
[Page 15.]

[45] D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. A. Cuendet,
J. S. Sousa, H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux, “Truly
privacy-preserving federated analytics for precision medicine with multiparty
homomorphic encryption,” Nature Communications, vol. 12, no. 1, p. 5910,
Oct. 2021. doi: 10.1038/s41467-021-25972-y Number: 1 Publisher: Nature
Publishing Group. [Online]. Available: https://www.nature.com/articles/s414
67-021-25972-y [Pages 15 and 25.]

[46] “ML | Stochastic Gradient Descent (SGD),” Feb. 2019, section: Computer
Subject. [Online]. Available: https://www.geeksforgeeks.org/ml-stochastic-g
radient-descent-sgd/ [Page 16.]

[47] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, “Federated Optimization in Heterogeneous Networks,”

http://arxiv.org/abs/2108.11887
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://www.nature.com/articles/s42256-020-0186-1
https://www.nature.com/articles/s41467-021-25972-y
https://www.nature.com/articles/s41467-021-25972-y
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/

References | 87

Apr. 2020, arXiv:1812.06127 [cs, stat]. [Online]. Available: http:
//arxiv.org/abs/1812.06127 [Pages 16 and 41.]

[48] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Inference
Attacks against Machine Learning Models,” Mar. 2017, arXiv:1610.05820
[cs, stat]. [Online]. Available: http://arxiv.org/abs/1610.05820 [Page 17.]

[49] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis,
“PPFL: privacy-preserving federated learning with trusted execution
environments,” in Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’21. New
York, NY, USA: Association for Computing Machinery, 2021. doi:
10.1145/3458864.3466628. ISBN 978-1-4503-8443-8 pp. 94–108. [Online].
Available: https://doi.org/10.1145/3458864.3466628 [Page 17.]

[50] J. Park and H. Lim, “Privacy-Preserving Federated Learning Using
Homomorphic Encryption,” Applied Sciences, vol. 12, no. 2, p. 734, Jan.
2022. doi: 10.3390/app12020734 Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/207
6-3417/12/2/734 [Pages 17 and 26.]

[51] M. Mansouri, M. Önen, W. Ben Jaballah, and M. Conti, “SoK: Secure
Aggregation Based on Cryptographic Schemes for Federated Learning,”
Proceedings on Privacy Enhancing Technologies, vol. 2023, no. 1, pp.
140–157, Jan. 2023. doi: 10.56553/popets-2023-0009. [Online]. Available:
https://petsymposium.org/popets/2023/popets-2023-0009.php [Page 17.]

[52] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation
for Privacy-Preserving Machine Learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing Machinery, 2017.
doi: 10.1145/3133956.3133982. ISBN 978-1-4503-4946-8 pp. 1175–1191.
[Online]. Available: https://doi.org/10.1145/3133956.3133982 [Pages 17, 18,
and 24.]

[53] H. Zhu, R. Wang, Y. Jin, K. Liang, and J. Ning, “Distributed
additive encryption and quantization for privacy preserving federated
deep learning,” Neurocomputing, vol. 463, pp. 309–327, Nov.
2021. doi: 10.1016/j.neucom.2021.08.062. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0925231221012522 [Page 17.]

http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1610.05820
https://doi.org/10.1145/3458864.3466628
https://www.mdpi.com/2076-3417/12/2/734
https://www.mdpi.com/2076-3417/12/2/734
https://petsymposium.org/popets/2023/popets-2023-0009.php
https://doi.org/10.1145/3133956.3133982
https://www.sciencedirect.com/science/article/pii/S0925231221012522
https://www.sciencedirect.com/science/article/pii/S0925231221012522

88 | References

[54] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux,
“Multiparty Homomorphic Encryption from Ring-Learning-With-Errors.”
[Online]. Available: https://eprint.iacr.org/undefined/undefined [Page 17.]

[55] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A Survey
on Federated Learning Systems: Vision, Hype and Reality for Data Privacy
and Protection,” IEEE Transactions on Knowledge and Data Engineering,
pp. 1–1, 2021. doi: 10.1109/TKDE.2021.3124599 Conference Name: IEEE
Transactions on Knowledge and Data Engineering. [Page 18.]

[56] “PySyft,” Mar. 2023, original-date: 2017-07-18T20:41:16Z. [Online].
Available: https://github.com/OpenMined/PySyft [Page 18.]

[57] “IBM Federated Learning,” Mar. 2023, original-date: 2020-06-
19T17:19:21Z. [Online]. Available: https://github.com/IBM/federated-l
earning-lib [Page 18.]

[58] “Open Federated Learning (OpenFL) - An Open-Source Framework For
Federated Learning,” Mar. 2023, original-date: 2021-01-12T21:29:52Z.
[Online]. Available: https://github.com/securefederatedai/openfl [Page 18.]

[59] Z. Jiang, “FLASHE,” Feb. 2023, original-date: 2021-06-17T05:05:30Z.
[Online]. Available: https://github.com/SamuelGong/FLASHE [Pages 19
and 33.]

[60] “tf-encrypted/tf-encrypted: A Framework for Encrypted Machine Learning
in TensorFlow.” [Online]. Available: https://github.com/tf-encrypted/tf-encry
pted [Page 19.]

[61] “TF SEAL,” Mar. 2023, original-date: 2019-07-08T12:28:53Z. [Online].
Available: https://github.com/tf-encrypted/tf-seal [Page 19.]

[62] “TenSEAL,” Mar. 2023, original-date: 2020-01-25T14:36:55Z. [Online].
Available: https://github.com/OpenMined/TenSEAL [Page 19.]

[63] “Pyfhel 3.4.1 documentation.” [Online]. Available: https://pyfhel.readthedo
cs.io/en/latest/ [Pages 19, 41, and 54.]

[64] H. Li, “Salvia: Secure Aggregation for Federated Learning in Flower.”
[Online]. Available: https://hei411.github.io/projects/salvia.html [Page 19.]

[65] K. H. Li, P. P. B. de Gusmão, D. J. Beutel, and N. D. Lane, “Secure aggregation
for federated learning in flower,” in Proceedings of the 2nd ACM International

https://eprint.iacr.org/undefined/undefined
https://github.com/OpenMined/PySyft
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib
https://github.com/securefederatedai/openfl
https://github.com/SamuelGong/FLASHE
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-seal
https://github.com/OpenMined/TenSEAL
https://pyfhel.readthedocs.io/en/latest/
https://pyfhel.readthedocs.io/en/latest/
https://hei411.github.io/projects/salvia.html

References | 89

Workshop on Distributed Machine Learning. Virtual Event Germany: ACM,
Dec. 2021. doi: 10.1145/3488659.3493776. ISBN 978-1-4503-9134-4 pp.
8–14. [Online]. Available: https://dl.acm.org/doi/10.1145/3488659.3493776
[Page 19.]

[66] “The SSL Protocol.” [Online]. Available: http://www.webstart.com/jed/pap
ers/HRM/references/ssl.html [Page 20.]

[67] C. Allen and T. Dierks, “The TLS Protocol Version 1.0,” Internet Engineering
Task Force, Request for Comments RFC 2246, Jan. 1999, num Pages: 80.
[Online]. Available: https://datatracker.ietf.org/doc/rfc2246 [Page 20.]

[68] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
Internet Engineering Task Force, Request for Comments RFC 8446, Aug.
2018, num Pages: 160. [Online]. Available: https://datatracker.ietf.org/doc/r
fc8446 [Page 21.]

[69] “TLS Security 5: Establishing a TLS Connection,” Mar. 2019. [Online].
Available: https://www.acunetix.com/blog/articles/establishing-tls-ssl-conne
ction-part-5/ [Page 21.]

[70] E. Rescorla, “HTTP Over TLS,” Internet Engineering Task Force, Request
for Comments RFC 2818, May 2000, num Pages: 7. [Online]. Available:
https://datatracker.ietf.org/doc/rfc2818 [Page 21.]

[71] C. Newman, “Using TLS with IMAP, POP3 and ACAP,” Internet Engineering
Task Force, Request for Comments RFC 2595, Jun. 1999, num Pages: 15.
[Online]. Available: https://datatracker.ietf.org/doc/rfc2595 [Page 21.]

[72] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the
age of sophisticated cyber attacks,” Computers & Security, vol. 72, pp.
212–233, Jan. 2018. doi: 10.1016/j.cose.2017.09.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404817301839
[Pages 21 and 23.]

[73] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Cyber Threat
Intelligence Sharing Scheme Based on Federated Learning for Network
Intrusion Detection,” Journal of Network and Systems Management, vol. 31,
no. 1, p. 3, Oct. 2022. doi: 10.1007/s10922-022-09691-3. [Online]. Available:
https://doi.org/10.1007/s10922-022-09691-3 [Pages 21, 22, 23, and 26.]

[74] N. Oliveira, I. Praça, E. Maia, and O. Sousa, “Intelligent Cyber
Attack Detection and Classification for Network-Based Intrusion Detection

https://dl.acm.org/doi/10.1145/3488659.3493776
http://www.webstart.com/jed/papers/HRM/references/ssl.html
http://www.webstart.com/jed/papers/HRM/references/ssl.html
https://datatracker.ietf.org/doc/rfc2246
https://datatracker.ietf.org/doc/rfc8446
https://datatracker.ietf.org/doc/rfc8446
https://www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5/
https://www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5/
https://datatracker.ietf.org/doc/rfc2818
https://datatracker.ietf.org/doc/rfc2595
https://www.sciencedirect.com/science/article/pii/S0167404817301839
https://doi.org/10.1007/s10922-022-09691-3

90 | References

Systems,” Applied Sciences, vol. 11, no. 4, p. 1674, Jan. 2021. doi:
10.3390/app11041674 Number: 4 Publisher: Multidisciplinary Digital
Publishing Institute. [Online]. Available: https://www.mdpi.com/2076-3417/
11/4/1674 [Page 22.]

[75] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure Single-Server Aggregation with (Poly)Logarithmic Overhead,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. Virtual Event USA: ACM, Oct. 2020.
doi: 10.1145/3372297.3417885. ISBN 978-1-4503-7089-9 pp. 1253–1269.
[Online]. Available: https://dl.acm.org/doi/10.1145/3372297.3417885
[Page 24.]

[76] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. S. Quek, and H. Vincent Poor, “Federated Learning With Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3454–3469, 2020. doi:
10.1109/TIFS.2020.2988575 Conference Name: IEEE Transactions on
Information Forensics and Security. [Page 24.]

[77] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “{BatchCrypt}:
Efficient Homomorphic Encryption for {Cross-Silo} Federated Learning,”
2020. ISBN 978-1-939133-14-4 pp. 493–506. [Online]. Available: https://
www.usenix.org/conference/atc20/presentation/zhang-chengliang [Pages 25
and 47.]

[78] J. Ma, S. Naas, S. Sigg, and X. Lyu, “Privacy‐preserving federated learning
based on multi‐key homomorphic encryption,” International Journal of
Intelligent Systems, vol. 37, no. 9, pp. 5880–5901, Sep. 2022. doi:
10.1002/int.22818. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/int.22818 [Page 26.]

[79] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data Poisoning Attacks
Against Federated Learning Systems,” in Computer Security – ESORICS
2020, ser. Lecture Notes in Computer Science, L. Chen, N. Li, K. Liang,
and S. Schneider, Eds. Cham: Springer International Publishing, 2020. doi:
10.1007/978-3-030-58951-624.ISBN978 − 3 − 030 − 58951 − 6pp.480 −
−501. [Page 29.]

[80] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating Sybils in Federated
Learning Poisoning,” Jul. 2020, arXiv:1808.04866 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1808.04866 [Page 29.]

https://www.mdpi.com/2076-3417/11/4/1674
https://www.mdpi.com/2076-3417/11/4/1674
https://dl.acm.org/doi/10.1145/3372297.3417885
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://onlinelibrary.wiley.com/doi/10.1002/int.22818
https://onlinelibrary.wiley.com/doi/10.1002/int.22818
http://arxiv.org/abs/1808.04866

References | 91

[81] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, F. Piessens, and
D. Gruss, “Plundervolt: How a Little Bit of Undervolting Can Create a Lot of
Trouble,” IEEE Security & Privacy, vol. 18, no. 5, pp. 28–37, Sep. 2020. doi:
10.1109/MSEC.2020.2990495 Conference Name: IEEE Security & Privacy.
[Page 31.]

[82] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao,
L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão, and N. D. Lane,
“Flower: A Friendly Federated Learning Research Framework,” Mar. 2022,
arXiv:2007.14390 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2007.1
4390 [Page 32.]

[83] “Pipenv: Python Dev Workflow for Humans — pipenv 2023.6.12.dev0
documentation.” [Online]. Available: https://pipenv.pypa.io/en/latest/
[Page 32.]

[84] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov. 2012. doi: 10.1109/MSP.2012.2211477
Conference Name: IEEE Signal Processing Magazine. [Page 35.]

[85] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning
with Limited Numerical Precision.” [Page 48.]

http://arxiv.org/abs/2007.14390
http://arxiv.org/abs/2007.14390
https://pipenv.pypa.io/en/latest/

	Introduction
	Background
	Research Question
	Objectives
	Research Methodology
	Information Collection
	Framework Developing
	Framework Testing
	Advanced Strategy Exploration
	Report Writing

	Delimitations
	Evaluation & News Value

	Background
	Confidential Computing
	AMD Secure Encrypted Visualization
	Security Challenges of AMD SEV

	Homomorphic Encryption
	Homomorphic Encryption Algorithms
	Limitations of Homomorphic Encryption

	Federated Learning
	Federated Learning Algorithms
	Secure Aggregation
	Comparison of FL frameworks

	SSL/TLS
	Threat Intelligence
	Threat Intelligence Sharing

	Related Work

	Methodology
	Threat Model
	Framework Developing Methods
	Startup
	Implementing HE
	Preliminary Tests

	Framework Testing
	Planned Test Settings
	Evaluation Metrics
	Datasets
	TI dataset
	MNIST dataset

	Prototype Deployment

	Framework Design
	System Overview
	Federated Learning Process
	Stage 1: Initial Setup
	Stage 2: FL Training
	Stage 3: Completion

	Homomorphic Encryption Schemes
	Flashe
	Flashev2
	CKKS & BFV

	Quantization and Weighted Averaging
	Symmetric Quantization
	Primary Weighted Averaging Strategy
	Improved Weighted Averaging Strategy: MWAvg
	Flashev2+MWAvg

	Implementation
	Heflp Submodules
	heflp.secureproto
	homoencrypschemes
	quantization

	heflp.training
	heflp.client
	heflp.strategy
	heflp.utils
	heflp.info

	Heflp Usage
	Deployment

	Results and Evaluation
	Security Assessment
	Performance Evaluation
	Error Rates of HE Schemes
	Training Performance Evaluation
	Simulation settings
	Training Curves and Analysis

	Efficiency Evaluation
	Evaluation Settings and Metrics
	Time Efficiency Test of Uniform pattern
	Time Efficiency Test of Nonuniform Pattern
	Time Efficiency Test of Model Types
	Memory Overhead Test
	HE Efficiency Comparison

	Conclusions and Future Work
	Discussion
	Future Work

	References

