s

B R,
EKTHS

VETENSKAP
&8 OCH KONST 9%

e

ForestCast for Peer-to-Peer Live Streaming

A Solution to Heuristically Constructing Trees

AMIR PAYBERAH, FATEMEH RAHIMIAN

Master’'s Thesis at Royal Institute of Technology (KTH)
Supervisor: Ali Ghodsi
Examiner: Seif Haridi

KTH-ICT-ECS

SWEDISH
IMSTITUTE OF .

COMPUTER

SCIEMCE

Abstract

Media Streaming over Internet, as a popular high bandwidth application, is an ex-
pensive service in terms of resources. An approach to reduce the cost of this service
is to use peer-to-peer overlays, in which each node shares its resources with the
others. Thus, the capacity of system grows by the number of participating nodes.
In this thesis we present ForestCast, a peer-to-peer live media streaming system.
Within ForestCast, we have proposed a number of heuristics and examined their
impact on the quality of service experienced by clients. To evaluate ForestCast, we
have implemented a simulator, called SICSSIM-B, which is a stochastic discrete-
event flow-level simulator that models bandwidth, link latencies and congestion.
We have shown that by selecting appropriate heuristics, one can increase bandwidth
utilization, quality of the media playback, and the fault-tolerance of the nodes, as
well as decrease the playback latency and startup delay. These heuristics include
considering the properties of the nodes when positioning them in the overlay, select-
ing multiple distinct suppliers for a node, fairly distributing data segments in the
overlay, and continuously incorporating an incremental improvement to the overlay
structure.

Key words: media streaming, peer-to-peer live streaming, application level multi-
cast, overlay networks, peer-to-peer simulator.

1l

Acknowledgments

We are deeply grateful to our supervisor, Ali Ghodsi, who basically introduced the
main idea of ForestCast. He worked with us side by side and helped us with every
bit of this research. He also taught us how to write a scientific text by patiently
walking us through this thesis document. We are honored to have worked with our
examiner, Professor Seif Haridi, and we thank him for his invaluable help and sup-
port during our work.

We are also thankful to Tallat Mahmood Shafaat, for the fruitful discussions
and the knowledge he shared with us. He also has the main credit for building the
first version of SICSSIM. We also thank Cosmin Arad, who helped us to setup our
simulation environment, and Ahmad Al-Shishtawy for his suggestions and subtle
hints. Besides, we are grateful to people of SICS Center for Networked Systems
(CNS), and finally we acknowledge the financial support given to us by the CoreGrid
project.

Contents

Abstract

1 Introduction

1.1 Motivation
1.2 Contribution
1.3 Delimitation
1.4 Outline

2 Related work

2.1 Classification Framework Lo oL,
2.1.1 Finding Supplying Peers
2.1.2 DataDelivery

2.2 Existing Solutions Lo
2.2.1 Push Method Solutions (Single Tree)
2.2.2 Push Method Solutions (Multiple Trees)
2.2.3 Pull Method Solutions
2.2.4 Push-Pull Method Solutions
2.2.5 Other Solutions L
2.2.6 Related Work at a Glimpse

3 ForestCast

3.1 Solution
3.1.1 Join Procedure
3.1.2 Leave Procedure
3.1.3 Failure Handling

3.2 Incremental Improvement

3.3 Remarks.

4 Simulator
4.1 Challenges and Approaches

4.2 SICSSIM-B
4.3 Existing Solutions
4.3.1 Criteria

4.3.2 Simulators Review

vil

iii

Ot DN = =

12
16
16
18
21
24
27
29

31
32
33
37
38
40
44

viii

5 Evaluation
5.1 Experimental Setting
5.2 Impact of Different Heuristics
5.2.1 Node Collection
5.2.2 Parent Selection
5.2.3 Startup Segment
5.2.4 Buffering Delay
5.3 Measurements at Scale
5.3.1 Bandwidth Utilization
5.3.2 Tree Depth
5.3.3 Startup Delay
5.3.4 Playback Latency
5.3.5 Received Quality
5.3.6 Disrupted Nodes
5.4 Impact of Incremental Improvement
6 Future Work
7 Conclusion
Bibliography
Index

CONTENTS

79

81

83

89

List of Figures

1.1 Study road map of this documen

2.1 Locating supplying peers by a centralized method
2.2 Locating supplying peers in a hierarchical method
2.3 Locating supplying peer in DHT method
2.4 Locating supplying peers by controlled flooding method
2.5 Comparison of different methods for locating supplying peers
2.6 Data delivery through a single tree
2.7 Data delivery through multiple trees
2.8 Comparison of different methods of content delivery
2.9 Comparison of studied solution

3.1 Buffers are affected when nodes change their position
3.2 Lessen the buffer damage when nodes change their position
3.3 Arrange the subtrees when nodes change their position

4.1 Packet level simulation o o
4.2 Fluid based simulation L0 o
4.3 Nodes connection in a peer-to-peer overlay and in physical network . . .
4.4 SICSSIM-B overall structure
4.5 Bandwidth matrix
4.6 Properties of surveyed simulators 0oL
4.7 Complementary information about surveyed simulators

5.1 Bandwidth distribution measured in real scenarios
5.2 Playback latency by having BFS-DFS policy and BFS policy
5.3 Quality of received media by having BFS-DFS policy and BFS policy . .
5.4 Quality of received media by Distinct and Non-Distinct Parents policies
5.5 Head-segment policy L
5.6 Mid-segment policyo
5.7 Playback latency by Head-Segment and Mid-Segment policies
5.8 Quality of received media by Head-Segment and Mid-Segment policies .
5.9 Playback latency of peers for different buffering delay (join only)

5.10 Quality of received media for different buffering delay (join only)

1X

58
61
62
63
64
64
65
66
67
67

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

List of Figures

Average treedepth Lo 69
Average time to joino L 70
Average playback latencyo 72
Playback latency of peers in join only scenario (join only scenario) . . . 72
Playback latency of peers in low churn scenario (low churn scenario) . . 73
Playback latency of peers in high churn scenario (high churn scenario) . 73
Average qualityo 74

Fraction of nodes receiving varying levels of quality (low churn scenario) 75
Fraction of nodes receiving varying levels of quality (high churn scenario) 76
Average number of disrupted nodeso L 7

Algorithm Listings

= © 00 ~J O U i W N =

Join Procedure o 34
Find Open Nodes 34
Find Open Nodes Per Stripe 35
Select Parents 36
Assign Priority To Stripes 36
Decide On The Startup Segment 37
Leave Procedure 39
Failure Handling Procedure 40
Incremental Improvement - Request Promotion 43
Incremental Improvement - Request Reconfiguration 44

xi

Chapter 1

Introduction

Streaming media is a multimedia that is sent over a network and played as it is
being received by end users, i.e. users do not need to wait to download all the
media; instead, they can play it while the media is delivered by the provider. There
are different approaches to media streaming. In this thesis work we look at some of
them and introduce our solution to multicasting media over a network.

1.1 Motivation

Media Streaming over Internet is getting more popular everyday. Websites, such as
YouTube !, provide media content to millions of viewers. The conventional solution
for such applications is the client-server model, which allocates servers and network
resources to each client request. Since media streaming demands a high transmission
rate and causes heavy load on servers, it is an expensive service in terms of resources.
So the client-server model fails to provide such a service when the number of clients
grows, unless resources are increased proportionally to the number of clients. Since
there are few companies, like Google, who can afford providing such an expensive
service at large scale, finding alternative solutions is an active field of research [67].
IP multicast is an efficient way to multicast a media stream over the network, but it
is not used in practice due to its limited support by the Internet Service Providers.
An alternative solution is Application Level Multicast (ALM) |7, 34|, which uses
overlay networks to distribute large-scale media streams to large number of clients.
One type of overlay network is peer-to-peer overlay. Peer-to-peer overlay is a type
of network in which each peer simultaneously functions as both client and server
to the other peers on the network. In this model the peers who have all or part of
the requested media can forward it to requesting peers. Since each peer contributes
its own resources the capacity of whole system grows when the number of peers
increases.

lwww.youtube.com

2 CHAPTER 1. INTRODUCTION

Peer-to-peer streaming is challenging; because to have a smooth media playback,
data blocks should be received with respect to certain timing constraints. Other-
wise, either the quality of the playback is reduced or the continuity of the playback
is disrupted. What is more, in live streaming, it is expected that at any moment,
clients receive points of the media that are close in time, ideally, the most recent part
of the media delivered by the provider. For example in a live football match, people
do not like to hear their neighbors whooping it up for a goal, several seconds before
they can see the goal happening. Satisfying these timing requirements is more chal-
lenging in a dynamic network, where (i) nodes join/leave/fail continuously, called
churn, or (ii) network capacity changes due to network congestion etc.

Many different solutions have been already proposed for peer-to-peer media
streaming, but few of them have been able to satisfy all the above mentioned require-
ments. We believe this is partly because some of these requirements are conflicting.
For example in order to provide a constant high quality stream, you may ask users
to store the media in their buffer for a while before they start to play; which will
result in a high playback latency and start up delay.

The other problem with the existing solutions is that each solution comes with
its own metrics and measurements. Hence a fair comparison of different approaches
is difficult. Even for those solutions, which are mainly similar and differ only in
some small parts, there is no clear way to truly compare how those little differences
affect the quality of service.

1.2 Contribution

Our contributions to the media streaming problem are (i) designing an algorithm
for peer-to-peer media streaming, called ForestCast, (i) implementing a stochastic
discrete event peer-to-peer simulator, which also models bandwidth and link laten-
cies, called SICSSIM-B, and finally (iii) investigating how different heuristics will
affect the quality of service experienced by clients.

In ForestCast we use a central server to handle the control messages and a peer-
to-peer overlay to deliver the media stream to nodes. As we discussed, the large
scale data, which is troublesome in media streaming, motivates us to move from
the client-server model to peer-to-peer overlays. Constructing and maintaining such
overlays incur a control overhead, which must be kept low so that it does not waste
the access link capacities itself. This low overhead makes it feasible for a central-
ized directory to deal with a large number of control messages. Hence, we build
the peer-to-peer overlay only for the bandwidth intensive part of the service, which
is the data delivery to the nodes. Our proposed solution, differs from the existing
solutions in that we solve the problem using a heuristic technique. ForestCast pro-
vides a framework, which can be configured with different constraints and objective

1.2. CONTRIBUTION 3

functions. In other words, we choose a performance centric approach that easily
adopts to various design goals. So this solution can serve a wide range of media
providers, who have their own requirements, priorities and objectives.

To evaluate our algorithm, we developed a simulator, called SICSSIM-B. Cur-
rently there are very few peer-to-peer simulators available. These simulators either
have to consider all the details of packet transmissions in network, which makes
them barely scalable for simulating huge number of data packets, as it is required
in media streaming, or they have to abstract all the underlying layers of network,
which leads to inaccurate measurements. Furthermore, none of the available simu-
lators can simulate data streams and measure the efficiency of streaming in terms
of timing requirements of data blocks. Our simulator enables such measurements
while keeping the simulator scalable to evaluate the behavior of the overlay at large
scale.

Our solution also serves as a platform to study how different heuristics can
change the properties of data delivery overlays. What is desired in all the existing
algorithms, is to construct and maintain an efficient data delivery overlay, but there
is no common definition for being “efficient”. This is why the algorithms are not
fairly comparable to one another. If we use a central server with global knowledge,
which can quickly make the best possible decisions with respect to certain criteria
and objectives, we will end up in an optimum overlay for the respective configura-
tion. This overlay can then be used as a reference of measurement, by the algorithm
designers and can help them to decide on the best policies they can apply in order
to improve their overlay.

Our experiments show that for positioning nodes in the trees, it is very important
to consider the properties of the joining nodes. For example it is a wise decision to
put nodes with petty bandwidth as far as possible from the media source, by using a
Depth First Search policy. Even during the lifetime of an overlay, incorporating an
incremental improvement, which pulls the stronger nodes up the trees and pushes
the weaker nodes down, will result in a more efficient overlay. Note to be taken,
that a strong node is not only a node with a high bandwidth, but the one who has
also stayed long in the system.

We also observe that to maximize bandwidth utilization, it is of crucial impor-
tance to uniformly distribute different parts of the media, e.g. substreams, in the
overlay. For example, nodes are better to prioritize forwarding a substream, which
they have forwarded less. A fair distribution of data in the overlay, prevents a situ-
ation in which some part of the data becomes rare, and even though there is a free
capacity in the network for data delivery, data is not accessible and the bandwidth
can not be utilized.

What is more, we show that selecting distinct parents for a node, makes it more

4 CHAPTER 1. INTRODUCTION

fault tolerant and will decrease the number and severity of disruptions nodes may
ever experience.

Another interesting result we come up with, is that a greedy approach to choose
the startup segment for a joining node, would result in not only a better playback
latency, but also, surprisingly, a better quality. More exactly, although one may
think starting with an earlier point of the media would make a node more fault
tolerant, we conclude that it is always better to provide the nodes with the most
recent data available, that is the largest segment all the parents have in common.

1.3 Delimitation

As mentioned before, one of our motivations is to enable a fair comparison of differ-
ent algorithms and see how close they are to an optimum solution. This is possible
only if we can assume a global view of the whole overlay, e.g. by assuming a cen-
tralized directory that knows about all the peers and the structure of the overlay.
Hence, even though the study of a fully distributed system without any centralized
directory is interesting, we exclude it from this thesis document and leave it for the
future work. See Chapter 6.

The centralized directory that we introduce in ForestCast can either be a sin-
gle server or a set of distributed servers. Using a set of distributed servers would
eliminate the single point of failure problem, which may be of interest for media
providers. However, replacing a single server by a set of distributed servers is an
independent field of research [54, 49, 17] and is out of scope of this document. So
we only assume a single server as the centralized directory.

As we will see in Chapter 2, one approach to peer-to-peer media streaming,
which is attaining more interest these days, is the combination of push models and
pull models. In a push model, data is multicast through predefined paths in the over-
lay, but in pull model data is explicitly requested from other nodes who possess it. In
this document we only focus on push model, i.e. how we can construct the multicast
paths, so that we can guarantee a certain level of quality of service. This method can
be further improved by incorporating a pull model for acquiring those data segments
a node misses in the pure push model; but we leave it for future work. See Chapter 6.

Furthermore, a field of study, which is relevant to media streaming, is the en-
coding techniques. There is work still ongoing in this area [8]. One of the proposed
solutions is Multiple Description Coding or MDC [18], which we use in ForestCast
and will describe further in Chapter 2. Although ForestCast is independent of the
media encoding technique, in this document we do not consider the use of other
encoding techniques.

1.4. OUTLINE 5

1.4 Outline

The rest of this document is organized as follows. Chapter 2 provides a framework
for classifying and comparing solutions, and reviews the related work in terms of the
framework. Chapter 3 presents ForestCast, our solution to media streaming over a
peer-to-peer overlay. It also provides a number of heuristics, which can be applied
to construct data delivery overlays. Chapter 4 presents the existing challenges in
simulating peer-to-peer algorithms, as well as a brief description of the existing sim-
ulators. In this chapter we also introduce our simulator, SICSSIM-B, which we used
for the purpose of evaluation. Chapter 5 shows how ForestCast performs in different
scenarios and with different configurations. In Chapter 6 we hint on some future
research directions, and finally in Chapter 7, we conclude the work.

Figure 1.1 shows a road map of how one can read this document. The arrows

show the dependency between chapters, so readers may skip some of the chapters
and go directly to what is of their interest.

Introduction

Simulator
Related Work e

ForestCast Ghallenges and Approaches
Challenges and Approaches -

SIGSSIM-B
Existing Solutions
ExBsting Solutions

Evaluation

Different Heuristios
Different Network Sizes

Incremental Improvements

Conclusion

Figure 1.1: Study road map of this document

Chapter 2

Related work

In this chapter we review the related work, but before delving into details of indi-
vidual solutions, we provide a framework in which solutions can be classified and
compared.

2.1 Classification Framework

We believe each peer-to-peer media streaming solution should provide the answer to
the following two main questions:

1. How to locate supplying peers?

2. How to deliver content to peers?

Next, we study a number of answers to these questions.

2.1.1 Finding Supplying Peers

The first question we need to answer when studying a peer-to-peer media streaming
solution is that how a peer finds its supplying peers. According to [67] the main
methods, which serve this purpose, are:

o Centralized method
e Hierarchical method

DHT based method

Controlled flooding method

Gossip based method

8 CHAPTER 2. RELATED WORK

Centralized method
The first solution for locating supplying peers is to use a centralized directory. In this
method the information about all peers, e.g. their address or available bandwidth,
is kept in a centralized directory. The centralized directory maintains the overall
topology of the overlay. Two sample algorithms in this category are CoopNet [42]
and DirectStream [19].

As we can see in Figure 2.1, whenever a new peer arrives, it sends a join request
to the server and the server finds one or more proper data provider(s) for it, con-
sidering the local information about the overlay and the properties of the joining
peer. Then the peer and its provider(s) can communicate with each other. When a
node wants to leave, it sends a leave request to the server, and waits until it receives
the server’s grant. Meanwhile the server finds a substitute provider for the leaving
node’s children. If a node fails, it takes time before the server detects the failure and
its information would be out-of-date meanwhile. To detect failures, server can peri-
odically probes the nodes to see if they are alive. But as the number of nodes grows,
the burden of server links increases. Another solution is to get help from peers to
detect the failure. In this case, whenever a peer detects the failure of another peer,
i.e. its parent, it informs the server of that failure.

The advantage of the centralized model is that since the central server has a
global view to the overlay network, it can handle node joins and leaves very quickly.
One of the arguments against this model is that the server becomes a single point of
failure, and if it crashes, no other peer can join the system. But the central server
can be replaced by a set of distributed servers. This is described in Section 3.3.

Central Server

Figure 2.1: Peer location using centralized method. The peer sends its join request
to the central server (1), the central server finds proper providers for the peer and
informs the peer about them (2), the peer contacts them (3), and then the provider(s)
sends data to peer (4).

2.1. CLASSIFICATION FRAMEWORK 9

Hierarchical method

The next method for locating supplying peers is using a hierarchical model, which is
used in some systems such as Nice [3], ZigZag [57], and Bulk Tree [1]. In this method
several layers are created in the overlay network. As we can see in Figure 2.2, the
lowest layer (layer-0) contains all the peers. The peers in this layer are grouped into
some clusters, according to a property defined in the algorithm, e.g. the latency
between peers. One peer in each cluster is selected as a head. The selected head for
each cluster becomes a member of one higher layer (layer-1). By clustering the peers
in this layer and selecting a head in each cluster, we can form the next layer, and
so on, until we end up in a layer consisting of a single peer. This single peer, which
is a member of all layers is called the rendezvous point (The node in the layer-2 in
Figure 2.2).

Whenever a new node comes into the system, it sends its join request to the
rendezvous point. The rendezvous node returns a list of all connected peers on the
next down layer in the hierarchy. The new node probes the list of peers, and finds
the most proper one and sends its join request to that peer. The process repeats un-
til the new node finds a position in the structure, where it receives its desired content.

This model is scalable and it guarantees to find proper providers for the peers.

. 1
layer2 -, > 9 2
J
|/ -—
- |
layer1 H—-""'"" 5 | 3 |"|
— 4
Fa =] [= B
-l - | -
layer-0 | 7 /\ :
Tl ™ . - -

~

Figure 2.2: Peer location using hierarchical method. In each layer the light area
shows the a group of peers (cluster). The dark node in each cluster is the head of
the group, which is selected to be a member of higher layer. Each joining node sends
its join request to the peer in the highest layer cluster (1), that peer introduces its
clustermate at the lower layer (2), then the new node finds the best peer among
them (3), and send its request again to that (4).

DHT based method
Third approach to locate supplying peers is based on Distributed Hash Table (DHT).
As described in [17],

10 CHAPTER 2. RELATED WORK

“A distributed hash table is a hash table, which is distributed among a set
of cooperating computers. Just like a hash table, it contains key/value
pairs. The main service provided by a DHT is the lookup operation,
which returns the value associated with any given key. In the typical
usage scenario, a client has a key for which it wishes to find the associ-
ated value. Thereby, the client provides the key to any one of the nodes,
which then performs the lookup operation and returns the value asso-
ciated with the provided key. Every node should be able to lookup the
value associated with any key. Since all items are not stored at every
node, requests are routed whenever a node receives a request that it is
not responsible for. For this purpose, each node has a routing table that
contains pointers to other nodes, known as the node’s neighbors. Hence,
a query is routed through the neighbors such that it eventually reaches
the node responsible for the provided key. Figure 2.3 illustrates a DHT
which maps file names to the URLs representing the current location of
the files”.

SplitStream [7| and Pulsar [30] are two sample algorithms that work over a DHT.
In these systems each peer keeps a routing table including the address of some other
peers in the overlay network. Whenever a new node comes to the system, it sends
request message to find a supplying peer. The peers forward the message according
to their local routing tables, until it reaches the responsible node for handling that
request (Figure 2.3). This method is scalable and it finds proper providers rather
quickly. It guarantees that if proper providers are in the system, the algorithm finds
them.

L/MF\L
- b

key value

streaml | idl

- id3

streamz = id2
stream3 | id3

- ids | '
stream4 | id4 \ _ _ //
: — I —

_ stream5| id5
id4

Figure 2.3: Locating supplying peer in DHT method. The media stream files are
distributed among the peers, and the peers keep routing pointer to each other. If an
application sends a lookup request to node id4 to find streaml, node ¢d4 routes the
request to node id5, because it does not contain that file, and node id5 also routes
the request to node id1, which contains the streaml and can response the request.

2.1. CLASSIFICATION FRAMEWORK 11

Controlled Flooding method

The forth method is controlled flooding, which is originally proposed by Gnutella
[56]. GnuStream [23] is a system who used this idea to find supplying peers. In this
system, each peer has a neighbor set. Whenever a peer seeks a provider, it sends its
query to its neighbors. Each peer forwards the request to all of its own neighbors
except the one who has sent the request. The query has a time-to-live (TTL) value,
which decreases after each rebroadcasting. The broadcasting continues until the
TTL becomes zero. If a peer, who receives the request satisfies the peer selection
constraints, it will reply to the original sender peer (Figure 2.4).

This method has two main drawbacks. First, it generates a significant traffic
and second, there is no guarantee for finding appropriate providers.

—{,,/;/-
- — | : 5 th=1
-4 £ o

G e R ~ —
’ wm - b

v
£

- — — reply
reguest

Figure 2.4: Locating supplying peers by controlled flooding method. One application
sends its request with TT'L, = 3. Each peer decreases the TT L and rebroadcast it to
all neighbors except the one who received the request from. The peers who matched
the request response to the origin peer.

Gossip based method

The last approach to find supplying peer is the gossip based method. Many al-
gorithms are proposed based on this model, e.g. CoolStreaming/DONet [68] and
PULSE [46]. In this method each peer maintains a neighbor set, which is a partial
view of the whole overlay. Whenever a new peer comes in to the system, it contacts
a bootstrapping point and is given some random neighbors. Each peer periodically
communicates with its neighbors to maintain a number of available partners in the
presence of node departures. Peers also periodically send their data availability in-
formation to their neighbors to enable them find appropriate suppliers, who possess
data they are looking for.

12 CHAPTER 2. RELATED WORK

This protocol is scalable and failure-tolerant, but because the neighbor selection
is random, sometimes the appropriate providers are not found in a reasonable time.

A brief comparison

Figure 2.5 shows a brief comparison of the above mentioned techniques. Since in the
centralized method, the central server maintains the information of whole system
and all peers send their information periodically to it, it has the lowest scalability.
The controlled flooding method also is not very scalable because of generating a
large traffic. In contrast, the hierarchical, DHT-based, and gossip-based methods
have a good scalability.

In control flooding method, the system can not find supplying peers if they locate
out of TT'L scope. Small values of T'I'L deteriorates this problem. The gossip-based
method also can not guarantee finding supplying peers in a bounded time, because
of the random nature of neighbor selection.

In centralized method, the peers do not play any role in selecting their providers,
and leave it to be decided by the central server. Hence, the peers do not maintain
information about other peers in system and they only know the central server. So
the order of information kept in them is O(1). In other methods, though, peers have
a neighbor set and a partial view of the system, so the order of information they
maintain is O(logN).

Approach Scalability = Search guarantee Order of information kept at a peer

Cenralized method low yes O1)

Hierarchical method high yes Oflog N)

DHT based method high yes Oflog N)

Controlled flooding method low no Oflog N)

Gossip based method high no Oflog N)

Figure 2.5: Comparison of different methods for locating supplying peers

2.1.2 Data Delivery

After finding supplying peers, the next question to be answered is how the peers
deliver data to one another. There are three main methods for data delivery:

e Push method
e Pull method
e Push-Pull method

2.1. CLASSIFICATION FRAMEWORK 13

Push method

The main idea in push method is that each peer pushes the data it receives to a
number of other peers, according to predefined paths. There are two main categories
in push method: single tree and multiple trees [67|. In single tree model (Figure 2.6),
a multicast tree is constructed among all the peers in system and each peer is re-
sponsible to send data to its children. The advantage of single tree structure is its
simple topology and no redundancy in data delivery, because each peer receives the
data from its single parent. The tree topology has some drawbacks though. Firstly,
it does not utilize the upload bandwidth of leaves and only the interior nodes, which
are a minority, carry the burden of data forwarding. Secondly, the tree is a fragile
structure. Because each node is connected to a single parent, if the parent fails, the
peer and the subtree under it will suffer a data loss.

Media Server

—

é Lo

/\\

e 8

= x

-
N\
- .

l?l

Figure 2.6: One single tree is created among the peers of the system, which is rooted
at the media server

To mitigate these problems, the multiple trees topology is proposed (Figure 2.7).
In this topology the stream is split into several substreams, called stripes or descrip-
tions, and a separate tree is responsible for forwarding a single stripe. There are
several techniques to split a stream into a number of stripes e.g. layering technique
[8] or Multiple Description Coding (MDC) [18]. MDC is one of the splitting tech-
niques, which fragments the media stream to multiple independent substreams. In
order to decode the media stream, any stripe can be used, however, the quality
improves with the number of stripes received in parallel.

In multiple trees model, the nodes can join as many trees as the number of stripes
they want to receive. A node receives each stripe from different providers, and in
case of failing any of its providers, the node can receive other parts of the media
from its other providers. Hence a node’s failure will not interrupt the stream of its
children as long as they receive other stripes from different paths. Such events only
causes a temporary loss of quality before the damage is fixed. Some solutions, like
SplitStream [7], manage the nodes such that a node can be an interior node in one
tree and leaf in other trees. So, because the leaves in one tree are interior nodes in

14 CHAPTER 2. RELATED WORK

other trees, their upload bandwidth are utilized.

Media Server

— ~
7 -7] ~
- ~ S
-~ ~ ~
- e
- \\
-

Su
> ¢ . _ e, W
[DR
= «] s 2 ra

Figure 2.7: Two trees are created among the peers. Both trees are rooted at media
server. One tree is shown by dashed line and the other one is shown by continues
line. Having two trees means that the media stream is split in to two stripes, and
each stripe is delivered by one tree.

Pull method

Another method for data delivery is pull method. The main idea of pull method
is that each peer explicitly requests required data from other peers. Each peer has
a neighbor set and it periodically exchanges data availability information with its
neighbors. Whenever a peer receives such information from other peers, it learns
about the data segments it has not received yet. It then requests the missing data
from the peers in the neighbor set, who possess it. To motivate the peers in pull
method to cooperate in data delivery and share their upload bandwidth, one way is
to use tit-for-tat algorithm as used in Bittorrent [10].

Pull methods are divided into two main groups: receiver-driven and chunk-driven
[61]. In the receiver-driven approach, the receiver requests the stream from other
peers, and if a peer accepts the request, then a session will be established between
them. From then on, the supplying peer will transfer the stream to the requesting
peer. GnuStream [23] and CollectCast [21] use this approach. On the other hand, in
chunk-driven approach, the media stream is divided into chunks or data segments,
and the receiver requests each chunk explicitly from other peers, typically different
ones. Put differently, there would be one request per data chunk. Coolstreaming/-
DONet [68] and PULSE [46] use this approach.

Although the random partner selection in pull method improves resource utiliza-
tion and load balancing, but it can not guarantee that the data blocks are received
in time. Also, since neighbors should exchange data availability information period-
ically, the control overhead is higher than tree-based models.

2.1. CLASSIFICATION FRAMEWORK 15

Push-Pull method.

This method, which has gained more attention in recent years, combines the advan-
tages of push and pull approaches. Data delivery in this method has two phases. In
the first phase a tree structure (either single or multiple) is created and each peer
pushes the data to its children. In the second phase each peer requests the missing
data blocks from its neighbor. Pulsar [30] and Prime [31] are two examples that
work with this method.

A brief Comparison

Figure 2.8 shows a brief comparison of different methods for data delivery. The
single tree model has poor resilience to node failure, because the nodes receive data
from a single parent and if that parent fails, its children can not receive any data
any more. On the contrary multiple trees and pull model are more resilient, because
in the former nodes receive data from multiple parents, and in the latter each node
has a number of neighbor and can pull data from them.

The load balancing in single tree model is not fair, because we do not use the
upload bandwidth of leaves and only interior nodes carry the burden of data for-
warding. This problem is solved in multiple trees, since leaves in one tree can be
interior nodes in other trees. Also in pull model, all nodes in a neighbor set can use
the upload capacity of one another. As mentioned before to motivate nodes to share
their upload bandwidth, we can use different policies, e.g. tit-for-tat.

In push model (single tree and multiple trees) after creating the tree(s), there
is no extra overhead to deliver data, and nodes simply push data to their children;
whereas in pull model the nodes should periodically inform the others about the
availability of data and will produce some overhead. In push-pull method the data
is delivered by push model and the nodes pull data only if they can not receive it in
push phase. This model also has a low overhead.

Approach Resilience to Multiple supplier Load balancing Data delivery
node failure overhead

Push method (single tree)

Push method (multiple trees)

Pull method

Push-Pull Method

Figure 2.8: Comparison of different methods of content delivery

16 CHAPTER 2. RELATED WORK

2.2 Existing Solutions

In this section we briefly introduce some of the existing peer-to-peer media streaming
algorithms. We have grouped these algorithms by the method they deliver data. For
each solution we describe the major contributions, how nodes find their supplying
peers, i.e. how the data delivery overlay is built, how it deals with node leaves and
failures, and finally what the drawback are.

2.2.1 Push Method Solutions (Single Tree)

ZigZag

ZigZag |57] is a single tree algorithm for peer-to-peer media streaming, which uses
hierarchical method to find supplying peers. ZigZag separates logical and physical
connections between peers, namely administrative organization and multicast tree,
respectively. Administrative organization builds and maintains the overlay structure
i.e. the multicast tree, and data is delivered through this multicast tree. The main
contribution of ZigZag is how to map peers into administrative organization, and
build the multicast tree based on it, and how to update these two structures under
network dynamics.

ZigZag organizes peers into a multi-layer hierarchy of bounded-size clusters
([2,3k] in the highest layer and [k,3k] in other layers that k is constant). The
lowest layer (layer-0) contains all the peers. One peer in each cluster is selected as
the head of that cluster, and becomes a member of the next upper layer; and so on
until it reaches a layer with only one cluster. Note that, media server is a member
of all layers and head of all clusters it belongs to. ZigZag builds a multicast tree
over this organization.

Each peer periodically communicates with its clustermates, children and par-
ent, to maintain its position in the multicast tree and the administrative organiza-
tion. Two important values are sent to a parent by its children: Reachable(X) and
Addable(X). A Boolean flag Reachable(X) is true if and only if there exists a path in
the multicast tree from node X to a layer-0 peer, and a boolean flag Addable(X) is
true if and only if there exists a path in the multicast tree from node X to a layer-0
peer whose cluster’s size is in [k, 3k — 1].

Whenever a new peer P comes in to the system, it submits a join request to the
media server. If the administration organization has only one layer and its cluster
has enough capacity to accept a new member, the new node connects to the media
server directly. Otherwise, the join request is redirected along the multicast tree
downward until a proper peer is found. In this process, if a peer X, who receives the
request, is a leaf, P is added to X’s cluster and X’s parent is selected as the parent
of P in the multicast tree. Otherwise, if peer X is addable, it finds an addable
peer Y among its children, whose distance to source is minimum, and forwards the

2.2. EXISTING SOLUTIONS 17

request of P to Y. If the peer is not addable, it finds a reachable peer Z among
its children with shortest distance to source and forwards P’s request to Z. This
process continues until the peer reaches a leaf. Whenever size of a cluster exceeds
3k, it is split into two clusters.

In case of failure of a peer X at layer-j, for each cluster in layer-(j-1), whose
non-head members are children of X, the head of the cluster, Y, is responsible for
finding a new parent for the orphaned peers. Y selects a layer-j non-head cluster-
mate with the least degree as the new parent. Furthermore, since X used to be
the head of j clusters (layers-0, layer-1, ..., layer-(j-1)), those clusters must find a
new head. This is done by selecting a random clustermate of X at layer-0 and
letting it to replaces X in all those j clusters. What is more, if the size of a clus-
ter becomes less than k, that cluster is merged with another cluster of the same layer.

The main drawback of ZigZag is that it does not consider the upload bandwidth
capacity of peers in join procedure. Also, because ZigZag creates single tree con-
nection between peers, it has the general problems of single tree model, such as not
using upload bandwidth of leaves and vulnerability to failure of interior nodes.

DirectStream

DirectStream [19] is a peer-to-peer video streaming system that provides video on-
demand service with VCR operation support. It uses a centralized directory, called
AMDirectory, to find providers for each peer. The AMDirectory itself, is imple-
mented over Scribe [50] and Pastry [49], and provides a lookup service. It keeps
track of all servers and clients participating in system, and helps new clients to ob-
tain the required service.

DirectStream may comprises sevral media servers with their independant con-
tents. For each stream a user community is created in AMDirectory service and
the media servers register themselves in them as servers. New coming peers send
their request to AMDirectory to find proper parent. After setting up the connection
with parent, the peer registers itself in AMDirectory. A set of clients, who arrive
close in time, form a forwarding tree. DirectStream uses a QoS-sensitive peer selec-
tion algorithm to construct the streaming overlay. Each client sends its request to
AMDirectory service and receives a list of candidate suppliers. It then probe those
nodes and selects the one with he smallest distance to bandwidth ratio as its parent.

A similar procedure is used to support client recovery and VCR functionality.
By VCR we mean jump forward, jump backward or pause the media stream. If a
client leaves the system without earlier notification or uses VCR functionality, its
children lose their parent and cannot receive the stream any more. In this case, the
children start the recovery process, which is the same as a new client joining process.

The main drawback of DirectStream is using single tree for each media stream.

18 CHAPTER 2. RELATED WORK

In this model, while a recovery process is going on for some node, that node does
not receive any data. It also does not utilize the upload bandwidth of leaves.

2.2.2 Push Method Solutions (Multiple Trees)

SplitStream

SplitStream |7] is one of the solutions to multicast a stream through multiple trees
that uses a DHT-based method to find supplying peers. More exactly, the algorithm
is implemented over Pastry [49] and Scribe [50]. The key idea of SplitStream is to
split the stream into different independent stripes, using MDC [18], and multicast
each stripe using a separate tree. To ensure that the forwarding load can be spread
across all participating peers, a forest of stripe trees is constructed in a way that a
node is an interior node in at most one stripe tree and is a leaf node in all the other
ones. Such a set of trees is called interior-node-disjoint.

Nodes join as many trees as their desired indegree is, and they enforce their
outbound bandwidth limit by rejecting children beyond their outdegree capacity.
Since some nodes may be rejected, special mechanisms are introduced to make sure
no node remains parent-less. These mechanisms are push down and anycast. When
an overloaded node receives a request from a prospective child, it either rejects this
child or accepts it and rejects one of its existing children, which is less desirable than
the new child. A node is more desirable if its node id is closer to its parent node id.
In both cases the rejected child contacts one of the children of the overloaded node.
At each step the orphaned node, either finds a parent or is pushed down the tree
once more. If the prospective child hits a leaf without finding a parent, then it uses
an anycast to find a node with free capacity in the tree regardless of its node id, if
such a node exists at all.

one of the main problems with SplitStream is the impact of nodes with hetero-
geneous bandwidth on its efficiency. In Bharambe et. al. [4] this problem is nicely
discussed:

“while the pushdown and anycast operations help Scribe cope with het-
erogeneous node bandwidth constraints, they may result in the creation
of parent-child relationships which correspond to links that are not part
of the underlying Pastry overlay. We term such links as non-DHT links.
We believe these non-DHT links are undesirable because: (i) the route
convergence and loop-free properties of DHT routing no longer apply
if non-DHT links exist in significant numbers; and (ii) such links re-
quire explicit per-tree maintenance which reduces the benefits of DHTs
in terms of amortizing overlay maintenance costs over multiple multicast
groups (and other applications).”

Another problem is that in an interior-node-disjoint, nodes are purposefully placed
in different distances from the root of multiple trees, which means they receive dis-

2.2. EXISTING SOLUTIONS 19

tinct stripes with different latencies. This is undesirable for a live media streaming
application, which involves strict timing constraints. The problem seems negligible
when the depth of the trees are small, e.g. three or four. But it is augmented when
the system scales to trees with larger depth and nodes are placed in diverse distances
from the source; because for a node to playback the media, it has to either wait long
enough to receive all the stripes it is supposed to receive, or to ignore the late ones.
The former will either increase the source-to-end delay or disrupt the continuity of
the media; while the latter wastes the bandwidth of both sender and receiver and
unnecessarily burdens the network.

Orchard

Orchard |34] is an Application Level Multicast (ALM) algorithm for peer-to-peer live
streaming. Orchard is implemented over unstructured peer-to-peer system and uses
gossip-based method to find supplying peer. Each peer maintains a neighborset,
which is a partial view of the network and its member are selected randomly. The
peers learn about each other by performing limited broadcast. Orchard uses MDC
[18] to split a video stream into several substreams, called descriptions, and creates
a dynamic tree for each of them. Each description is represented by a colour, and
the peers get the colour of the first description they receive.

The main goal of Orchard is to overcome the free riding problem. It copes with
this problem by forcing peers to strike deal with other peers to receive descriptions.
It means that for each description received, one description should be sent, possibly
to a third peer. The mechanism of deals ensures that peers contribute as much
outgoing bandwidth as their incoming bandwidth is.

A new peer P, which has not received any description yet, is blank. This node,
finds a non-blank peer @ in its neighbor set and sends its join request to it. If Q
accepts the request, it redirects one of the streams, which it is already forwarding to
a third node R, to P and P would send that steam to R in return. This mechanism
is called redirection. To get other descriptions, P checks its neighbor set to find
other peers who have a colour that it does not have. Then it tries to strike a deal
with them to exchange description. The only exception, when a node can receive
some description for free, is when it connects to the media source.

Whenever a peer leaves the system or fails, other peers will stop receiving the
descriptions they get from that peer. In such a case, all the deals with that peer
and any data forwarding based on those deal are canceled. This deal cancellation
may then propagate to other trees as well. In other words, a single node failure may
easily turn to a catastrophic failure. To handle this problem, Orchard uses backup
parents. Each peer keeps track of those peers in its neighbour set that can serve
as a substitute parent, if the current parent fails. If the failed node is a peer close
to source, finding a backup parent may be more difficult. So when the children of
failed node try to rejoin the system, they might have to rejoin a parent of a different

20 CHAPTER 2. RELATED WORK

colour. This makes the colour of the failed peer becomes rare in the network. To
tackle this problem, each peer finds the rare colours, by tracking the colours in its
neighbor set, and changes its colour whenever its beneficial. A peer benefits from
switching colour, if it enables it to strike more exchange deals than it could before
switching.

The first drawback of Orchard is its unrealistic assumption about incoming and
outgoing bandwidth of peers. It assumes all peers have sufficient incoming and out-
going bandwidth to receive and send all descriptions. All the introduced mechanism
for stiking deals highly depend on this assumption, whereas in real world we have
peers with heterogeneous bandwidths. Hence the algorithm can easily result in un-
successful joins in real scenarios. Also it does not use the outgoing bandwidth of
peers properly, because it insists that all peers have a strictly balanced download
and upload rate.

ChunkySpread

ChunkySpread [59] is a multitree unstructured peer-to-peer multicast. More clearly
it consists of two parts: (i) an unstructured random graph, which it uses to find sup-
plying peers by, and (ii) a multitree structure, which it uses to deliver data through.
ChunkySpread assumes the media is split into several stripes and each stripe is mul-
ticast on a separate tree. Nodes gossip to select their parents with respect to certain
requirements. The first requirement is to avoid loop. To do so, any data packet is
marked with the identities of every node who has forwarded the packet. The other
important criteria for parent selection is satisfying the target load of a node (the
number of stripes a node is willing to transmit), as well as the maximum load of a
node (the maximum number of stripes a node can transmit). Complementary con-
siderations are tit-for-tat and latency, which can be used for further improvements
of the structure.

In ChunkySpread at first a random graph is built over peers by using SwapLinks
protocol [60]. Whenever a new node comes into the system, in an initial node dis-
covery phase, it contacts a rendezvous node and is provided by a set of existing
nodes. Then it takes random walks over the existing graph through those nodes,
and randomly selects its neighbors. Nodes periodically exchange local information,
i.e. load, latency, and looping information, with their neighbors. A node uses the
information about its neighbors, to select the best possible parent for each stripe it
is willing to receive.

The first drawback of ChunkySpread arises from a shortcoming in SwapLinks:
in a dynamic environment where nodes leave or fail randomly, maintaining uniform
neighbor sets, which respect the indegrees and outdegrees of the nodes, incurs a
large control overhead. Another drawback is that ChunkySpread can not guarantee
that a node finds at least as many different stripes as it requires in its neighbor set.
Because there is no such consideration, whatsoever, while the graph is constructed.

2.2. EXISTING SOLUTIONS 21

Note that adding this constraint to the previous ones, not only increases the overhead
of graph construction, but also violates the randomness of neighbor selection, which
may further results in losing the nice properties of a random graph. What is more,
ChunkySpread always favors satisfying load constraints over latency constraints. It
neither considers the deadlines for experiencing a smooth media playback, nor the
latency deviation by which a node receives different stripes from different paths.
Hence, the objectives defined in ChunkySpread do not seem to be aligned with the
inherent timing requirements of live streaming applications.

2.2.3 Pull Method Solutions

CoolStraming /DONet

CoolStreaming/DONet |68] is a chunk-driven overlay network for live media stream-
ing. Peers in DONet gossip to find a number of partners and they use pull method to
retrieve the stream data from their partners. The core idea of DONet is very simple:
each peer periodically informs its data availability information to its partners, re-
trieves unavailable segments from them, and also provide segments to them. DONet
tries to solve three practical challenges: (i) how to select partners for each peer, (ii)
how peers acknowledge the availability of data segments to their partners, and (iii)
how peers retrieve segment from their partners. Neither the partnerships nor the
data transmission directions are fixed in DONet. A peer can be either a receiver
or a supplier, or both, depending dynamically on the data availability information
of each peer. An exception is the source node, which is always a supplier, and is
referred to as the origin node.

Every DONet peer maintains a partial view of the identifier of other overlay
nodes (mCache), and the availability of the data segments in their buffer (Buffer
Map or BM for short). Each node periodically exchanges its BM with its partners,
and then schedules which segment is to be fetched from which partner accordingly.
There are two constraints for scheduling: (i) the playback deadline for each segment
and (ii) the heterogeneous streaming bandwidth from the partners. If the first con-
straint can not be satisfied, then the number of segments missing deadlines should
be kept minimum.

When a node joins to the system, it first contacts the origin node, which ran-
domly selects a deputy node from its mCache and redirects the new node to the
deputy. The new node then obtains a list of partner candidates from the deputy,
and contacts these candidates to establish its partnerships in the overlay. To create
and update the mCache, each peer periodically generates a membership message to
announce its existence. DONet uses SCAM [15], which is a scalable gossip member-
ship protocol to distribute membership messages among peers.

When a node wants to leave, it issues a departure message. But if a node fails,
a partner that detects that failure will issue the departure message on behalf the

22 CHAPTER 2. RELATED WORK

failed node. The departure message is gossiped similarly to the membership mes-
sage. Kach node, who receives this message, removes the entry for the departed
node from its mCache.

The main drawback of CoolStreaming/DONet is that notifying peers and sub-
sequently requesting segments potentially results in long delays before any data is
exchanged. Also due to the random selection algorithm, the quality of service can-
not be guaranteed. Another drawback of CoolStreaming/DONet is that it assumes
that all the peers can (and are willing to) cooperate in the replication of the stream,
while it is possible to have selfish peers in system that do not want to share their
upload bandwidth.

PULSE

PULSEF [46] is a chunk-driven peer-to-peer live streaming system that uses gossip-
based method to find supplying peers. The data delivery approach used in PULSE is
pull model. PULSE assumes that: (i) peers have some knowledge of the other peers,
(ii) peers can estimate their point in the stream with respect to media clock, and
(iii) they can estimate their maximum outbound bandwidth. The idea of PULSE
is to place peers in system according to their current {rading performances, e.g. to
locate resource-rich peers near the media source.

The media source splits the stream into a series of chunks. The core algorithm
of PULSE answers three main questions: (i) how each peer selects its partner for
data exchange, (ii) how chunks are chosen and scheduled to be sent, and (iii) which
chunks should be requested from which partners. The idea used for peer selection is
an altruistic tit-for-tat algorithm similar to the one used in BitTorrent, and a simple
cumulative trust metric. The connection between peers are the result of pairwise
negotiations and data exchanges. The chunks to be sent are selected comparing the
requests received from each peer to the chunks currently held in the whole local
buffer. The selected chunks are then sorted using “Least Sent First, Random”, and
the first one is chosen for sending. The algorithm for chunk requests is similar to
the heuristic used in CoolStreaming/DONet. Its purpose is to request the rarest
chunks among those that are locally available, and to distribute the requests across
different possible providers.

The main problem of PULSE, like other pull-based algorithms, is that there is
no guaranteed level of quality of service due to the random selection algorithm.

ChainSaw

Chainsaw [43] is a chunk-driven peer-to-peer overlay multicast that uses a randomly
constructed graph with a fixed minimum node degree. It uses gossip-based method
to construct the random graph. Every peer connects to a set of nodes that are
called neighbors. Data is divided into small size packets and disseminated using
a simple request-response protocol. Whenever a peer receives a packet, it sends a

2.2. EXISTING SOLUTIONS 23

notify message to its neighbors. Each peer creates a list of required packets and
their availability in its neighbor set. Then it randomly selects some packets from
this list and requests them via a request message. To insure that a peer does not
request the same packet more than once, the peer keeps track of what packets it
has already requested from every neighbor. It also limits the number of outstanding
requests with a given neighbor, to ensure that requests are spread over all neighbors.

In Chainsaw, the media source node, called seed, generates a series of new pack-
ets with monotonically increasing sequence numbers at constant rate. The seed
maintains a list of packets that have never been uploaded before. If the list is not
empty and the seed receives a request for a packet that is not on the list, the seed
ignores the requested sequence number, sends the oldest packet on the list instead,
and deletes that packet from the list. This mechanism, called Request Querriding,
ensures that at least one copy of every packet is uploaded, and the seed will not
spend its upload bandwidth on uploading packets that could be obtained from other
peers, unless it has spare bandwidth available.

The main problem of Chainsaw is that it can potentially incur high network and
CPU overheads due to per packet notifications. The other problem is that, due to
the random packet selection, it can not handle special cases e.g. when a packet is
rare or some of the packets have priority over the others. Although the authors
mentions this problem themselves, they do not propose any solution for it.

GnuStream

GnuStream [23] is a receiver-driven peer-to-peer media streaming system, which is
built on top of Gnutella [56]. GnuStream uses a controlled flooding method to find
supplying peers, and uses pull method for data delivery. Each peer who is interested
in receiving the media stream, finds multiple supplying peers to provide it with the
stream. Each streaming session is controlled by the receiver peer.

Whenever a peer P1 looks for a media stream, it calls the Gnutella search ser-
vice, and as a result it is given a number of suppliers (for example P2 — P5). Then
it selects a number of peers, from the list of its suppliers, such that the aggregated
bandwidth of them is sufficient for the stream (for example P2 — P4). Tt also puts
the unselected peers as standby senders (for example P5), which are called upon to
take over the load of degrading/disconnected senders during the streaming session.
Each peer in GnuStream uses periodic probing to detect changes in the status of its
suppliers. If a peer detects any problem, e.g. failure or bandwidth degradation of
a supplier, it will migrate all or part of that supplier’s streaming load to another
supplier or a standby peer.

GnuStream uses two policies to distribute the load among senders: even allo-
cation and proportional allocation. By using even allocation, the streaming load is
distributed evenly among all senders. This policy is suitable for homogeneous en-

24 CHAPTER 2. RELATED WORK

vironments. However, the proportional allocation is more flexible and suitable for
dynamic and heterogeneous environments. In this policy the stream load is dis-
tributed among senders in proportion to the current capability of them.

The main drawback of GnuStream is its high network traffic. Depending on the
degree of connectivity among peers, the flooding of queries can generate a lot of
network traffic. Besides, objects located out of the search scope (defined by T'7TL in
Gnutella lookup service) would not be found in the system.

PPLive

PPLive |61, 62] is one of the most well-known deployed IPTVs in the world. It is a
chunk-driven peer-to-peer media streaming overlay, which uses gossip-based method
to find suppliers. According to [48], “As of May 2006, PPLive had over 200 dis-
tinct on-line channels, a daily average of 400,000 aggregated users, and most of
its channels had several thousands of users at their peaks”. PPLive is not open-
source, so little of its internal design mechanisms are known. PPLive streams live
TV and video data through overlays of cooperative peers. It has multiple overlays,
each belonging to one channels. Each channel streams either live TV programs or
episode-based programs i.e. a fixed preset program set, which is repeated periodically.

A user can join one channel at a time. A new node first retrieves a list of chan-
nels from a channel management server via HI'TP connection. Then it chooses one
channel, i.e. a single overlay, and retrieve a small set of member nodes, namely
partner list, from membership servers via UDP connection. Next it uses this partner
list to learn about other candidate partners. It can also update its partner list by
contacting the membership servers periodically. Partners are of two kinds: cand:-
dates and real partners. The real partners are used for exchanging video streams,
while the candidate partners are used to replace real partners who have become
unresponsive. A video stream is exchanged between each node and its real partners
via TCP connections.

The main drawback of PPLive is its start-up delay. When PPLive first starts, it
requires some time to search for peers and then tries to download data from active
peers. The observed delay is around 20 — 30 seconds for popular channels, and up to
2 minutes for less popular channels. The other problem of PPlive is the possibility of
transmitting duplicate media contents, which wastes the network bandwidth [62].

2.2.4 Push-Pull Method Solutions

Pulsar

Pulsar [30] is a solution to live streaming, which combines the advantages of push-
based approaches with the benefits of pull-based approach. The overlay consists of
an unstructured and a structured part. Initially, a peer is assigned a random set of
neighbors by a network entry point. Over time, a refinement process takes place as

2.2. EXISTING SOLUTIONS 25

peers learn about other peers from their neighbors and add them to their routing
table depending on the latency measured to these peers. To ensure the connectivity
of the overlay, it uses a DHT-like topology,that is the structured part of the overlay
and specifies the path on which data is pushed to the peers. However, the protocol
cannot guarantee that the push mechanism disseminate data to all peers, specially
in a dynamic network, such as Internet.

Thus, a second mechanism is used where peers notify their neighbors about the
corresponding sequence numbers they have newly received. When a peer does not
receive a data block through push mechanism, it explicitly requests it from a neigh-
bor which posses that block.

Prime

Prime [31] is a solution which uses a randomly connected and directed mesh overlay
for data delivery. Prime uses the centralized method to find supplying peers. The
central point is a bootstrapping node, who knows about all the participating peers
in the system. New nodes contact this bootstrap node to learn about some other
peers. On the other hand, all the connection for data transition are initiated by the
receiving peer, who tries to maintain a sufficient number of suppliers that can collec-
tively fill its incoming access link bandwidth. In order to maximize the bandwidth
utilization of both incoming and outgoing links of all participating peers, authors
suggest that all connections in the overlay have roughly the same ratio of bandwidth
to node degree, called bandwidth per flow.

Data is delivered in two phases: diffusion phase and swarming phase. In diffu-
sion phase, media source pushes distinct data segments to its children and so each
subtree is provided with a set of distinct packets. Each node requests new data
packets from one of its parents, which is the closest one to the media source in terms
of hop counts. So after a certain interval, all the nodes will receive a new set of data
packets. In the swarming phase, nodes from different subtrees contact each other to
find the missing data packets. in both phases, each node runs a packet scheduling al-
gorithm to determine what packets to request, from which parent and in what order.

Prime has a few shortcomings. First, the argument on forcing a certain band-
width per flow for all the connection is not well persuaded; even the simulation
results are imprecise (consisting very large confidence intervals) and so not support-
ive. Second, although the authors emphasize the importance of avoiding content
bottleneck, in which peers can not find missing data blocks in their neighborhood,
no way is provided to avoid such situation and the solution only counts on the ran-
domness of mesh construction. If such bottleneck happens nodes have to wait long in
order to find their required data units after a few swarming phases, when that data
becomes available in their neighborhood. Briefly, there is no guarantee for a reason-
able level of streaming quality. Third, the behavior of system in presence of churn is
not discussed at all, and there is no such consideration in the algorithm. Finally, the

26 CHAPTER 2. RELATED WORK

evaluation part comes with inappropriate assumptions that weaken the evaluation
outcomes, e.g. using MDC with 10 descriptions, which incurs a remarkable data re-
dundancy, and peers with high bandwidth capacities, which is not valid in real world.

mTreeBone

mTreeBone [64] is a peer-to-peer media streaming algorithm, which combines push
and pull model for data delivery. It constructs a tree over stable nodes in the net-
work, which are the nodes having an age over a certain threshold. Since nodes, who
have stayed longer in the overlay, are less likely to leave or fail, this tree is expected
to have a rather low churn. Nodes that are not members of this tree, connect to it
as a leaf and cannot adopt any child.

Data is delivered by two means. At first it is pushed through the tree and each
node has a tree-push pointer which indicates the latest data block it has received
in the push phase. Nodes also maintain a partial view of the network, using a gos-
siping technique, called SCAMP [15]. They establish connection with other peers
to find those data blocks they did not receive in the push phase. Likewise, they
maintain a mesh-pull pointer, which indicates the latest data blocks they received
in the pull phase. In order to prevent redundant data transfers, mesh-pull pointer
is always kept behind the tree-push pointer, which means request for pulling miss-
ing data are sent when there is no hope to receive them in push phase. Since the
tree structure plays an important role in efficiency of data delivery, mTreeBone tries
to incrementally improve the tree in terms of tree depth and nodes’ latency to source.

mTreeBone has some drawbacks. First, although nodes have multiple suppli-
ers, they do not really benefit from parallel data transfers which can result in low
transmission delays and low playback latencies. Second, bandwidth of leaves often
remains unutilized, which further results in unsuccessful joins, although the overlay
may have bandwidth to serve new nodes. What is more, while it nicely considers the
improvement of its main tree, it does not consider timing constraints of nodes, when
preempts a node’s position and offers it to another node with higher bandwidth. In
such cases not only the disconnected node, but also the subtree below it may suffer
from playback disruption or degraded quality.

Bullet

Bullet 6] is an algorithm that enables nodes to self-organize into a high bandwidth
mesh overlay. Bullet tries to maximize the amount of bandwidth delivered to re-
ceivers. To find the supplying peers, it assumes an underlying tree is already con-
structed, using one of the existing mechanism of tree construction and maintenance.
Nodes gather knowledge about their neighbors by exchanging random subsets of
nodes using a special protocol, called RanSub [26]. RanSub works in two phases:
collect phase and distribute phase. Collect phase starts when the leaves start to
propagate collect message up the tree, leaving state at each node along the path to
the root. Each node uses a compact operation to choose a random subset of nodes,

2.2. EXISTING SOLUTIONS 27

which are representatives of all members of the sub-tree rooted at that node. When
the root receives all the collect messages from all its children it starts the distribute
phase. In this phase each node sends a distribute message, which contains a random
subset of nodes with disjoint data, to its children. There are different ways to con-
struct this distribute set. For example one way is to use a RanSub-non-descendants
operation, which sends a random subset of nodes to each child, excluding its descen-
dants. Nodes then sends peering requests to each other, whenever they find out a
peering would be beneficial. This is how a mesh structure is formed across the nodes.

For a node to estimate how beneficial a peering is, it needs to detect the resem-
blance between its own content and the other node’s content. Each node maintains
a working set, which contains the sequence numbers of packets which have been
received successfully. By use of this working sets and by installing Bloom Filter|5],
nodes acknowledge those data blocks they have received as well as those data blocks
they are interested in. A sending peer, will install the Bloom Filter of its receiving
nodes, and sends them those data blocks that they do not have. The receiving nodes
will periodically update their Bloom Filter at the sending peers.

To summarize, first disjoint subsets of data blocks are pushed across the tree and
then, running RanSub protocol, nodes choose their neighbors, and receive missing
data blocks from multiple suppliers.

Although the general idea of Bullet is very nice, what is overlooked is how the
underlying tree is constructed, and if the properties of this tree influence the effi-
ciency of the algorithm, especially in the presence of churn. For example, if the tree
turns to be a deep tree, then a large number of nodes, which are far from the source,
would receive the pushed data with large delays. This delay will propagate further,
since this data feeds the next phase, when nodes transfer data over the constructed
mesh. Hence a lot of nodes may experience large latencies, which is not desirable
in live media streaming. Moreover, the deadlines for acquiring data blocks is not
considered in Bullet, which is again critical for live streaming applications. Finally,
although the algorithm tries to reduce the number of redundant data packets, it can
not avoid them. Because nodes do not explicitly request individual data blocks, it
is likely that they receive the same blocks from their parent in the tree and another
peer over the mesh. Since media streaming is a bandwidth intensive application,
it is of great importance that an algorithm avoids such redundant data transfers,
which wastes the network resources.

2.2.5 Other Solutions

SAAR

SAAR [37] is a shared control overlay for cooperative end-systems multicast. It has
a control overlay, which is a multicast tree built on top of a DHT, e.g. Scribe [50] on
top of Pastry [49], and is responsible for building and maintaining the data overlay.

28 CHAPTER 2. RELATED WORK

The data overlay can be a single tree, multiple trees, or even a swarming (block
based) overlay. It means that SAAR can be placed in any other solution categories
except the push-pull method group.

All the nodes in a data overlay form a group, which is associated with a group
identifier and a set of state variables. For each state variable it introduces an ag-
gregation operator and two propagation frequencies: one for upward and the other
for downward propagation. A state variable can be any aspect of a peer’s status,
for example forwarding capacity of a peer or its latency to media source. Each leaf
in the multicast tree, i.e. the control overlay, calculates the value of its state vari-
ables and propagates them up to its parent in the control tree. Each interior node
aggregates its own value with the values received from all its children, using the
aggregation operator, and sends it upward, until it hits the root of the control tree.
After that the aggregated value at the root is propagated down the tree to provide
each node with an approximation of the values in the whole group. These upwards
and downwards propagation are on going processes with predefined frequencies.

SAAR has a single anycast primitive, which takes the group identifier G, a con-
straint p, an objective function m and a traversal threshold ¢ as its arguments, and
returns a member of G whose state variables satisfy p and maximize m. Each any-
cast conduct a depth first search over the control tree and prune the subtrees whose
aggregated value is less than the best known value up to that point. In order to
build a certain kind of data overlay it is enough to define the set of state variables
and their corresponding aggregated operators, as well as the appropriate constraint
and objective function for peer selection.

What is interesting in SAAR is that it can be easily configured to serve different
objectives and no huge effort in the implementation is required if the priorities or
the objectives change. What is more, a single control overlay can be used to support
several data overlays, which provide different data streams. This can be very useful
in an IPTV with several channels, because the channel switching would be very
quick.

The first drawback of SAAR is that due to network and peers dynamism in the
Internet, having an ongoing optimization procedure, for improving the data overlay
structure, seems inevitable. Such optimization is not well discussed in SAAR, which
means although for each decision it tries to maximize the objective function of a
single peer, there is no consideration that over time the global utility of the data
overlay would be maintained. Also having a single anycast primitive would narrow
the way to build overlays with mixed approaches, such as push-pull overlays, which
are shown to be successful for media streaming.

2.2. EXISTING SOLUTIONS 29

2.2.6 Related Work at a Glimpse

Figure 2.9 depicts all the reviwed solutions in the framework we introduce in Section
2.1. The general trend shows a moment towards using pull methods. Though more
recently, algorithms, which are combining the advantages of the two methods are
going more interest.

Data Delivery Push method Push method Pull method Push-Pull method
supplying peers (Single tree) (Multiple trees)

Finding

Prime (2007)
mTreeBone (2007)

Centralized method DirectStream (2006)

Hierarchical method ZigZag (2003) mTraeBone (2007)
DHT-based method SAAR (2007) SAAR (2007) SAAR (2007) Pulsar {2007)
SplitStream (2003) mTreeBone (2007)
Controlled flooding method GnuStream (2003)
Gossip-based method Orchard (2008) CoolStreaming (2005) Buliet (2003)
ChunkySpread (20086) PULSE (2008)
ChainSaw (2005)
PPLive (2004)

Figure 2.9: How the studied solution find the supplying peers and how they deliver
data

Chapter 3

ForestCast

In this Chapter, we would like to introduce an algorithm to stream a large scale
media over a peer-to-peer overlay. This problem is challenging as one typically
needs to:

e Maximize the total utilization of upload bandwidth
e Minimize the playback latency
e Minimize the start-up delay

o Maximize the received quality by the nodes

The first requirement stresses that the solution needs to ensure the actual avail-
able upload bandwidth at each node should be utilized as much as possible. Any
solution must, therefore, adapt to the given upload bandwidth of the individual
nodes. This implies that even nodes with small upload bandwidth should be uti-
lized. The second requirement puts focus on latencies between the nodes and media
source. It also implies that the depth of the multicast trees should be shallow to
minimize latencies. The third requirement emphasize the importance of fast startup,
which is specially important when users wish to frequently switch between differ-
ent channels of an IPTV. Finally, the solution should provide a high quality media
stream to the clients. The quality does not only refer to the media rate the clients
receive, but the continuity of the playback should also be taken into account.

Note that some of the above mentioned goals are conflicting. For example, a
low startup delay can be achieved by making each peer play the media as soon as it
receives the first data segment. In such solution, when nodes do not buffer the media
at all, a node will immediately suffer a quality loss or disruption, the moment it fails
to receive a small piece of data; because there would be no time to makeup for that
data loss. Hence, there is a trade-off between starup delay and quality/continuity.
Moreover, sometimes we have to sacrifice a few nodes to improve the overall struc-
ture of the overlay. For example suppose a node with a very poor upload bandwidth

31

32 CHAPTER 3. FORESTCAST

connects directly to the media server and prevents other nodes to join the system.
In that case we desire to push this node down the trees and replace it with a node
with higher bandwidth capacity, even if it costs the weak node to loose its quality or
continuity. Nevertheless, before making such decisions we need to see how beneficial
the change is.

More generally, the problem at hand is an optimization problem with a number
of objectives, which are sometimes conflicting. Solving this problem is the process of
simultaneously optimizing these conflicting objectives subject to certain constraints.
ForestCast is an algorithm that heuristically moves towards these objectives, and en-
able providers to discover a solution which best fits their priorities. Depending on
the heuristics one may choose, overlays with different properties are shaped up. In
this section we introduce the main algorithm along with some of the heuristics, which
can be applied. Later, in the evaluation section, we will see how these heuristics
affect the resulting overlay.

3.1 Solution

ForestCast is a peer-to-peer media streaming system that uses multiple trees to
deliver data, and a centralized directory to find supplying peers. There are three
types of node in ForestCast: (i) peers, which are the nodes that download and/or
upload the stream, (ii) media server, which has the media to be streamed, and (iii)
central server, which has complete information about every peer and the overlay
network and constructs the trees. Without losing of generality, we assume the use of
MDC to split the media into substreams of equal size and equal value, namely stripes.
These stripes are further fragmented into equal size segments, which are numbered
by the media server sequentially. Each stripe is delivered through a separate tree,
rooted at the media server. In this section we will see how this data delivery overlay
is built and maintained by the central server. To start, we need to agree on some
terms and definitions we are going to use hereafter in the text.

e nodeld: a unique id, given to each node for further references.

e stripeld: a unique id, given to each stripe.

e startup segment: the first segment that providers of a peer send to it.
e head of buffer: the largest segment number a node has in its buffer.
e tail of buffer: the smallest segment number a node has in its buffer.
e playback point: the segment number a node is playing.

e media point: the segment number the media server is playing/broadcasting.

3.1. SOLUTION 33

e head-to-play distance: the difference between head of buffer and playback point
of a node.

o playback latency: the difference between the playback point of a node and the
media point.

e open node: a node whose available upload bandwidth is enough for sending at
least one stripe.

e peer profile: a set of information each peer periodically sends to the central
server. This profile includes the following attributes:

— playback point

— stripelds the peer is receiving

nodeld of the parent for each stripe

link latency to each parent
— head of buffer for each stripe

— tail of buffer for each stripe

3.1.1 Join Procedure

Whenever a peer enters the system, it contacts the central server and provides it
with its own upload /download bandwidth. The central server is in charge of finding
appropriate parents for this node. How this decision is made, will significantly affect
the efficiency of the system. The decision will be based on the existing trees and the
properties of the joining peer e.g. its available upload bandwidth. The server then
instructs the selected parents to start sending stream to the joining peer. Algorithm
1 presents the join procedure, that is the steps the central server goes through upon
receiving a join request. Briefly, the main steps are:

e Find a list of open nodes in each stripe tree,

e Assign a priority to the selected open nodes and select the most appropriate
parent for each stripe,

Decide about a startup segment,

Decide about the head-to-play distance of the peer,

Instruct the selected parents to start sending data to the new peer.

Note that, to accomplish the above mentioned tasks, several techniques may be
used by the server. Here we introduce a few heuristics for the methods in Algorithm
1. Later in Section 5, we will explain these heuristics in more details and investigate
their effects on the overlay properties.

34 CHAPTER 3. FORESTCAST

Algorithm 1 Join Procedure

1: upon event (JOIN-REQUEST | nodeld)

2: openNodeList — findOpenNodeList(node, Nyoderd)

3 parentsStripes < selectParents(openNodeList, Nyoderd, 0)

4: segment «— decideOnStartupSegment(parentsStripes)

5: headT'oPlay «— decideOnHeadToPlay()

6: for all (parent, stripe) in parentsStripes do

7 send (START-SEND-TO | node, stripe, segment) to parent
8 end for

send (JOIN-RESULT | headT'oPlay) to node

10: end event

findOpenNodeList(node, N): It collects N open nodes in each stripe tree, and
returns list of selected open nodes as output. Algorithm 2 and Algorithm 3 show the
associated pseudocode. The important question in findOpenNodeList is that from
where it starts picking the nodes and in what order. Heuristic 1 suggests two possi-
ble answers to this question. Having the requesting node as an input parameter, the
server is be able to choose different strategies for the nodes with different properties.

> Heuristic 1. A simple heuristic is to start from top of the trees where the media
server is located and traverse trees in Breadth First Order (BFS). This approach
places the peers as close as possible to the media server regardless of their bandwidth
capacities. However, we can apply another approach, which performs a Depth First
Order (DFS) search instead of BFS, for peers with no upload capacity. In Section
5.2.1, we will show how these two policies influence the overlay.

Algorithm 2 Find Open Nodes

1: procedure findOpenNodeList (node, N)

2 for all stripelrees do
3: openNodes «— findOpenNodeListInStripe(node, stripeTree, N)
4: openN odeList.add(openN odes)
5
6
7

end for
return openNodeList
end procedure

selectParents(openNodesList, N, i): This method selects a parents for each stripe
from the open node list. IV is the number of stripes and the third parameter, i, im-
plies that this peer is willing to receive any segment greater than ¢. This latter
parameter is handy when a node, which is already receiving some of the stripes,
wants to join other stripe trees, e.g. due to its parent departing. Apparently it
matters for this node to receive data segments from a certain point on. Algorithm

3.1. SOLUTION 35

Algorithm 3 Find Open Nodes Per Stripe

1: procedure findOpenNodeListInStripe (node, stripeTree, N)
2 peer « root of stripelree

3 while openNodes.size < N and there is a peer to examine do
4: if peer is open and peer is not leaving then
5

6

7

openN odes.add(peer, stripeT'ree)
end if
peer «— get next node in a BFS order not including the node itself and
its descendants
8: end while
9: return openNodes
10: end procedure

4 shows the related pseudocode. There are two important heuristics one can apply
while selecting parents, and both are closely related. First one is about to prioritize
the open nodes (Heuristic 2) and second one is about what makes a node more ap-
propriate parent. (Heuristic 3).

> Heuristic 2. There are many factors that can be taken into account for assigning
a priority value to the peers in the open node list, e.g. a peer’s available upload
bandwidth, or the number of its children. In Algorithm 5 we define our priority
function to be %, where b is the available upload bandwidth of the peer, f; is the

peer’s fanout, i.e. the number of its children, in stripe tree i, and [; is the latency
of the peer to the media source in the respective tree. Moreover «, § and v are
configurable parameters, which define the importance of the mentioned factors in
the function. Peers with higher values have more chance to be selected as a parent.
By considering the fanout of nodes, we persuade an even distribution of different
stripes in the overlay and give more priority to the peers who have sent fewer stripes
in each stripe tree. Note that, an individual peer may be given different priorities
in different trees and will favor forwarding a stripe, which it has forwarded fewer
times. In other words, we avoid a situation where some of the stripes become rare
in the system. In Section 5.2.2 we will see how the overlay is influenced when we
consider fanout of nodes and when we do not.

> Heuristic 3. After we assign a value to each node using the previous heuristic,
the next step is to select one parent for each stripe. One solution is to select the best
N nodes from the list, where N is the number of stripes. But by this naive choice
we may choose a node repeatedly as a parent in different trees. This makes the child
very vulnerable to the failure of the chosen parent. Another solution to select N
distinct top nodes. In Section 5.2.2 we will compare the outcome of using these two
heuristics. Algorithm 4 shows a sample implementation for parent selection.

36 CHAPTER 3. FORESTCAST

Algorithm 4 Select Parents

1: procedure selectParents (openNodeList, N, segment)

2 for all (peer, stripe) in openNodeList do

3 assignValue((peer, stripe))

4 end for

5: while selected ParentsStripes.size < N andopenNodeList is not empty do
6

7

8

9

(parent, stripe) «— pickOneParent(openNodeList)
selected ParentsStripes.add((parent, stripe))
node.addParent((parent, stripe))

openN odeList.excludeEnteriesFor(stripe)

10: update the value of peer in openNodeList for other stripes
11: end while
12: return selectedParentsStripes

13: end procedure

Algorithm 5 Assign Priority To Stripes

1. procedure assignValue (peer, stripe)
2 b — peer.getfreeUploadBW()

3 f « peer.getFanout(stripe)

4: [— peer.getTotalLatency(stripe)

5 (peer, stripe).value « b /(f5 x 17)
6: end procedure

decideOnStartupSegment(parentsStripes): After selecting one parent for each
stripe, we should decide on the first segment number, i.e. the startup segment, to
be forwarded to the joining node. This segment number determines a specific point
in the media that the joining peer will start to play. Note that selected parents
have different segments at their buffers. Algorithm 6 shows the pseudocode of this
method and Heuristic 4 suggests a few ideas that can be considered while making
this decision.

> Heuristic 4. Startup segment can be any segment that all the parents have in
common. For instance it can be the minimum of head of buffer of all parents. By
such selection the joining node would be able to watch the media with least possible
playback latency. Another approach is to choose the segment to be the maximum
of tail of buffers of all parents, which result in more tolerance to failure of the pre-
decessors. In other words there is a trade-off between playback latency and failure
tolerance. The startup segment can be any point between the two previous values.
As another example, Algorithm 6 shows a pseudocode of this method, which con-
siders the range of segments that all the parents have in their buffer and chooses
the middle segment. In Section 5.2.3 we will show how selecting different startup
segments will affects the quality of the received media by peers.

3.1. SOLUTION 37

Algorithm 6 Decide On The Startup Segment

1. procedure decideOnStartupSegment (select ParentsStripes)
2 for all (parent, stripe)in selected ParentsStripes do

3 head «— parent.headOfBuffer(stripe)

4 headO f Buf fers.add(head)

5: tail «— parent.teailOfBuffer(stripe)

6 tailO f Buf fers.add(tail)

7 end for

8 latestSegment «— headO f Buf fers.min()

9: earliestSegment «— tailO f Buf fers.max()

10: selectedSegment «— (latestSegment + earliestSegment)/2
11: return selectedSegment

12: end procedure

decideOnHeadToPlay(segment): Finally, the server should decide on the head-
to-play distance of the node, i.e. how long a peer should wait before it starts to
playback the media. Heuristic 5 suggests some relevant heuristics. If a peer buffers
more data before starts to playback, it would be more resilient to the failure of its
parents; because it would have more time to make up for the possible data loss. But
the more this buffering delay is, the higher startup delay and playback latency the
node will have.

> Heuristic 5. A simple solution is to have the same buffering delay for all nodes.
The question, then, is how long this buffering delay is. However in a more compli-
cated solution, the position of node in different trees may be considered, for example
a node, which it directly connects to the media server does not need to wait very
long to buffer data. A different approach is to leave this decision to be made by the
node itself. For example the node can estimate the latency to its different parents
and waits at least for the time required to receive a segment from the parent with
the most latency. In Section 5.2.4 we use the first technique with different values
for buffering delay.

3.1.2 Leave Procedure

When a node wants to leave the system, it sends a leave request to the central server,
and stays in the system until it receives the central server’s grant. Meanwhile the
server finds substitute parents for the children of the leaving node. Algorithm 7
presents the leave procedure. Main steps of this algorithm are:

e For each child of the leaving node, find the last segment it has already received
from the leaving parent.

38 CHAPTER 3. FORESTCAST

e For each child, find a substitute parent, which have the rest of the segments
soon enough to be able to forward them to the child, without the child missing
the segments’ playback deadline.

e If a new parent is found, instruct the new parent to start sending data from
the last segment on to the child, and also inform the leaving node to stop
sending data to that child. Otherwise, retry after a short interval.

o If a substitute parent could be found for all the children, instruct the parents
of the leaving node to stop sending data to it.

e Finally, grant the requesting node to leave the system.

3.1.3 Failure Handling

In ForestCast peers are responsible for detecting the failure of their parents. If they
detect a parent failure, they report it to the central server immediately. We ar-
gue that in this application we can assume a perfect failure detector. Because live
streaming inherently has certain timing constraints. These constraints can be used
to define an upper bound for the acceptable transmission delay in the overlay, and
this upper bound can be further used to introduce a perfect failure detector. But for
the sake of simplicity, now let us assume we only have an eventually failure detector.
We also assume that server is also able to detect the failure of nodes.

Failure handling is not very different from the leave procedure, except that after
rejoin, children of the failed node may be missing some of the segments. More exactly
a node may rejoin a new parent which does not have the subsequent segments of the
last segment it has received; because unlike leave, if a rejoin is unsuccessful there
would be no time for retry and the server will choose a substitute parent that causes
the least data loss, that is the shortest gap between the last delivered segment and
next accessible one. Note that, since all the decisions are made by the central server,
the damage will be fixed very fast. Moreover, since we tried to connect nodes to
distinct parents, at the first place, failure of a single parent causes its children to
lose at most one stripe meanwhile and they would receive rest of the stripes from
other nodes. Algorithm 8 shows how the central server handles failures. The main
steps are:

e Instruct the parents of the failed peer to stop sending data to it.
e Find the last segment of the stripes that the failed node has sent to its children.

e If possible, find a substitute parent for each child such that it does not miss
the next segment’s deadline; otherwise find a parent which causes the least
missing segments.

e Instruct the new parents to start sending data to their new children.

3.1.

SOLUTION 39

Algorithm 7 Leave Procedure

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

upon event (LEAVE-REQUEST | node)

success fulyRejoinedChild «— true
success fulyRejoined AllChildren «— true
node.leaving «— true
for all stripe do in node.getStripes()
success fulyRejoinedChild «— true
requiredSegment < node.lastSegment
for all child do in node.getChildren()
segment «— child lastSegment
newParent —findNewParent(child, stripe, segment + 1)
if newParent # null then
send (STOP-SEND-TO | stripe, segment — 1, child) to node
send (START-SEND-TO | stripe, segment, child) to newParent
if requiredSegment < segment then
requiredSegment = segment
end if
else
success fulyRejoinedChild «— false
success fulyRejoined AllChildren «— false
end if
end for
if success fulyRejoinedChild = true then
parent < node.getParent()
if parent # null then
send (STOP-SEND-TO | stripe, requiredSegment,node) to parent
end if
stripeTree.removeNode(node)
end if
end for
if successfulyRejoinedAlIChildren = true then
send (LEAVE-GRANTED | node) to node
else
send (LEAVE-REQUEST | node) to sel f
end if

35: end event

40 CHAPTER 3. FORESTCAST

e If some of the children are still parent-less, retry after a short interval.

Algorithm 8 Failure Handling Procedure

1: upon event (FAILURE-NOTIFICATION | node)

2 for all stripe in node.getStripes() do

3 parent «— node.getParent(stripe)

4 send (STOP-SEND-TO | node, stripe,0) to parent

5: for all child in node.getChildren(stripe) do

6 segment < child.lastSegment

7 newParent «— findNewParent(child, stripe, segment)

8 if newParent = null then

9: newParent < findShortest GapParent(child, stripe, segment)
10: end if

11: if newParent = null then

12: retry later to find new parent for this child

13: else

14: send (START-SEND-TO | child, stripe, segment) to newParent
15: end if

16: end for

17: stripeTree.removeNode(node)

18: end for
19: end event

3.2 Incremental Improvement

It is desirable to put nodes with higher bandwidth upper on the trees, because that
would result in shallower trees and nodes would experience lower latencies averagely.
Moreover, since the failure of a node up on a tree would influence a greater number
of nodes than a node down the tree, we desire to put more stable nodes closer to the
root. We propose to use a combination of these two properties to define the notion
of being a more desirable node. There are several studies, which show that a node
which has stayed long in the system is less likely to leave or fail [52, 58|. Hence, we
define a node’s strength in a tree to be the age of that node, age, times the number
of its children in that tree, fanout, plus its available upload bandwidth, freeBw:

Strength(A;) = agea - (fanouta, + freeBwa,)

where 7 is the index of tree. Accordingly, we define a node A to be stronger than a
node B in tree i, if

Strength(A;) > Strength(B;)
The above definition suggests that a strong node is a node that does not only have
a high upload bandwidth, but also has a long uptime.

3.2. INCREMENTAL IMPROVEMENT 41

The main idea in this incremental improvement is to let the stronger nodes bub-
ble up the trees, so that eventually we end up in a layout, in which node distances
from the root of trees are in the order of their decreasing strength. More exactly,
stronger nodes are placed closer to the media source, and nodes with petty upload
bandwidth, e.g. free riders, or nodes that join and leave very quickly, e.g. nodes
who just switch the channels to see whats on and then leave, are placed at the edges
of the overlay.

The improvement, which is presented in Algorithm 9 and Algorithm 10, has two
steps: (i) promotion, and (ii) reconfiguration. The first algorithm handles the pro-
motion requests, while the second reconfigures the subtrees below the nodes who are
promoted or demoted.

Nodes periodically acknowledge their strength to their children. Whenever a
child finds out that it is stronger than its parent, it sends a promotion request to
the central server. Upon receipt of this request, the central server goes through the
following steps (Algorithm 9):

e (Calculate the strength of the parent, the requesting child and its sibling, and
choose the strongest node of all, p. Note that, checking the siblings will prevent
several consecutive promotion requests for the same position in the trees.

e Instructs the grandparent of the p to switch its child from the p’s parent to p.
e Instruct p to start sending data to its old parent.
e Send promoted and demoted messages to p and it’s old parent, respectively.

Following the above steps, the position of the two nodes are swapped, but cer-
tain considerations should also be taken into account. Figure 3.1 shows a simple
example. Suppose node r is stronger than ¢, so it is beneficial for the system if
they change their position. If this replacement happens immediately, then r would
receive its next segment from p instead of ¢ and would benefit, because it gets closer
to the source. On the other hand ¢ is pushed down and would not receive any new
segment for a while, because its new parent, r, does not have any new data to send
to it yet. So ¢ would experience a delay before receiving its next segment. This delay
depends on how much the head of r is behind the head of ¢q. For example in Figure
3.1, assume each segment number is the data required for one second playback of the
media. So ¢ has to wait for almost 11 seconds to receive its next required segment
from r, while its head-to-play distance is only 5. Hence it either would be disrupted
for 6 seconds, or even worse would miss that stripe for that point on. The former
happens when ¢ does not receive any other stripes, while in latter it can continue
the playback by receiving other stripes. In this case, although some bandwidth is
wasted in the network to deliver that stripe to g, but that stripe misses the deadline.

42 CHAPTER 3. FORESTCAST

p |lssJss[sr[se]as a0 [ar] a2 s [aa]as]

Q [s0]s1[s2[33]3435 365738 [39]a0]

P j[as]a7]48]as [0 51 s2]5s [sa]55]s6]

I Jl20]212223]2a 25 [26 27 [28 [29 [30]

Figure 3.1: Buffers are affected when nodes change their position

A better solution is depicted in Figure 3.2. The central server asks ¢ to con-
tinue forwarding data segments to r up to the segment it has received from p, but
it instructs p to switch from its old child, ¢, to the new child, r, and starts sending
data to r from the segment that it was about to send to ¢, and on. This means
for a short period of time, r would receive data segments for the same stripe from
two suppliers. The moment r receives the first segment from p, it can forward it to
q. Hence g can receive its next required segment with a negligible delay, no matter
how much r’s head is behind. The only influence on ¢ is a small decrease in its
head-to-play distance.

Algorithm 9 shows how the central server reacts to a promotion request. Note
that the central server changes the status of the strong child and weak parent to pro-
moted and demoted respectively, in order to avoid several concurrent repositioning.
It also informs the peers of their state to prevent them from sending new requests,
when they are about to acquire new positions. What is more, the promoted node is
expected to notify the the central server for “reconfiguring” the subtrees, whenever
it is ready; i.e. when it does not receive any more data segments from its old parent.
In such situation, the promoted node sends a reconfiguration request to the central
server.

1l

Figure 3.2: Lessen the buffer damage when nodes change their position

Algorithm 10 shows how the server handles a “reconfiguration request”. The
main object of reconfiguration is to rearrange the subtrees below the promoted child
and the demoted parent to achieve a more balanced tree. Figure 3.3 shows an illus-
trating example. Suppose ¢ and 7 in the left side picture are going to change their
positions. In the first phase, e.i. promotion parents of r and ¢ change to p and r,

3.2. INCREMENTAL IMPROVEMENT 43

respectively. In the reconfiguration phase, first of all, r adopts its old siblings, a and
b, as its children. Since this node has a higher upload bandwidth than g, it is able
to accept more children. So among its old children, it keeps as many children as it
can support, preferably the strongest ones. The rest of its children are adopted by
the old parent, g, who was pushed down the tree.

@ @ ©® /@\C@ ®
CRORORD) CICIC

Figure 3.3: Arrange the subtrees when nodes change their position

In Chapter 5 we will investigate the influence of this improvement on the struc-
ture of trees.

Algorithm 9 Incremental Improvement - Request Promotion

1:
2
3
4:
5:
6
7
8

upon event (REQUEST-PROMOTION | node, tree)
parent < node.getParent(tree)
if parent.promoted # true and parent.demoted # true then
grandParent <« parent.getParent(tree)
child < parent.getStrongestChild(tree)
if child.promoted # true and child.demoted # true then

grandPar

9:
10:
11:
12:
13:
14:
15:
16:

segment <« parent.lastSegment

send (SWAP-CHILD | tree,segment, parent, segment + 1, child) to
ent

send (STOP-SEND-TO | tree, segment, child) to parent

send (START-SEND-TO | tree, segment + 1, parent) to child
child.promoted « true

parent.demoted «— true

send (PROMOTED | tree, true) to child

send (DEMOTED | tree, true) to parent

end if

end if

17: end event

44 CHAPTER 3. FORESTCAST

Algorithm 10 Incremental Improvement - Request Reconfiguration

1: upon event (REQUEST-RECONFIGURATION | node, tree)
2 demotedParent «— node.getDemotedParent(tree)

3 child.promoted « false

4: parent.demoted « false

5: send (PROMOTED | tree, false) to child

6 send (DEMOTED | tree, false) to parent

7 siblingList < node.getSiblingsFromDemotedParent()
8 for all sibling in siblingList do

9 if node is open then

10: segment «— sibling.lastSegment

11: send (STOP-SEND-TO | tree, segment, sibling) to demotedParent

12: send (START-SEND-TO | tree, segment + 1, sibling) to node

13: remove peer from siblinglist

14: end if

15: end for

16: if siblingList is not empty then

17: for all siblings in siblingList do

18: child «— node.get WeakestChild()

19: childSegment «— child.lastSegment

20: stblingSegment «— sibling.lastSegment

21: send (SWAP-CHILD | tree,childSegment,child, siblingSegment +
1, sibling) to node

22: send (SWAP-CHILD | tree, siblingSegment, sibling, childSegment +
1, child) to demotedParent

23: end for

24: end if
25: end event

3.3 Remarks

The central solution comes with many advantages. First of all the overhead of control
messages is very low. That is because nodes do not have to disseminate any control
messages to their neighbors and they do not make any effort to find the data. They
just wait to be told what to do. Only in case of a parent failure, its children send
a message to the central server and ask for a new parent. Upon receipt of such re-
quest, the server will repair the tree by assigning new parents to the orphaned nodes.

The central server can also reconfigure the trees periodically to better optimize
the overall performance and nodes would follow server’s orders to change their po-
sition and parents. What is more, this method not only makes things simpler and
more efficient, but also nodes can join the system much faster and they will be
placed in the best possible position. In other words the best decision is made in the

3.3. REMARKS 45

least possible time. Regarding the fact that most of the existing solutions suffer from
the remarkably high start-up delay, the benefits of this approach are of great interest.

If the feasibility of this solution is an issue or it is susceptible to be a single point
of failure then this server can be replaced by distributed servers, which can form a
Distributed Hash Table, e.g. Distributed k-ary System (DKS) [17]. The advantage
of this approach is that servers can be removed and added without the responsibility
of trees changing too much.

Chapter 4

Simulator

Computer simulation is a prevalent method for evaluation of many types of systems.
Due to the increasing complexity of systems in today’s world, the simulation meth-
ods and simulators have gained remarkable research interest. Specially computer
networks simulation brings about many challenging research problems due to the
complexity, size, and heterogeneity of typical networks.

In the next section we explain some of these challenges and requirements in more
details. Then we present our own solution, SICSSIM-B, and describe how it works.
Finally we review some of the existing peer-to-peer simulators.

4.1 Challenges and Approaches

Discrete-event simulation is a widespread technique for computer network simu-
lation. In this approach, operation of a system is represented as a chronological
sequence of events. Each event occurs at an instant in time and marks a change of
the state in the system. Such simulators have a queue known as Future Fvent List
(FEL), which includes the events that are to be processed in the order of their start
time.

A traditional model to simulate network traffic is packet-level simulation which
employs packet by packet modeling of network activities [25, 66]. In this model for
each packet departure or arrival one event will be generated (Figure 4.1). In fact,
packet-level simulation tries to be as close as possible to a real network. Considering
the effect of any single packet makes this approach accurate, but heavy weighted. If
the size of network grows, huge number of events will be generated, which results in
costly processing time and significant complexity. Therefore, packet-level simulation
can not scale well. That implies for peer-to-peer systems, which are generally aimed
to be scalable, packet-level simulation is not a good choice.

Another model, which simplifies simulating network traffic is, flow-level model,

47

48 CHAPTER 4. SIMULATOR

Figure 4.1: Packet level simulation

also known as fluid-based model [28]. In flow-level modeling the underlying layers
of network are abstracted away and the events are generated only when the rate of
flows change (Figure 4.2). This abstraction, enables simulations at large scale, but
at the cost of losing accuracy. This is because the effects of underlying layers are
ignored.

Figure 4.2: Fluid based simulation

In a static network or when flow rate changes occasionally, flow-level model
would achieve a high performance. In other word, compared to packet-level sim-
ulation, the largest performance gains are achieved with small networks and cases
where the number of packets represented is much larger than the number of rate
changes. For larger networks, a property described as the ripple effect [28, 29| can
reduce the performance advantage in the flow-level simulator. The ripple effect de-
scribes the situation where the propagation of rate changes leads to rate changes
in other flows which then need to be propagated again [25]. Hence, this kind of
modeling sometimes results in overestimating the performance of some of the algo-
rithms. Nevertheless, [14] argues that flow-level modeling is a reasonable approach
and shows that the achieved results are not dramatically different.

While these models come with their advantages and disadvantages, making an
appropriate choice is important for producing valid evaluation results. This choice
highly depends on the characteristics of the application which is being evaluated and
the objectives of evaluating it. That would require a systematic analysis to identify
the critical variables and to incorporate them in the model, while eliminating all

4.2. SICSSIM-B 49

irrelevant distractors.

We desire to analyze the performance of a peer-to-peer system for live media
streaming. Such an application involves large scale data transfer and it is very
susceptible to link capacities. Also it inherently has stiff timing constraints which
makes it sensitive to link latencies and packet drops in physical network. So our
simulator should be able to accommodate these characteristics. It is also important
to notice that connections in overlay network do not necessarily conform to the
connections in the physical network. This mismatch may unexpectedly influence
the performance of peer-to-peer systems. For example suppose a number of nodes
are connected together as shown in figure 4.3 (a). At the same time the physical
connection between them is shown in 4.3 (b). Apparently any traffic between A and
B will go through C and D, use their download and upload bandwidth and loads
the link connecting them; but this can not be observed in figure 4.3 (a).

(a) P2P overlay

(b) Physical connections

Figure 4.3: Nodes connection in a peer-to-peer overlay and in physical network

4.2 SICSSIM-B

Since our application involves high bandwidth data transfer, we choose a flow-level
model to be able to conduct experiments at large scale. To deal with inaccuracy we
improve this model by incorporating some of the effects of the underlying network,
which may influence the performance of our algorithm. In other words, although
we abstract away the functionality of the underlying layers, we do not ignore them
completely and will try to reflect some of their relevant effects on our measurements.
For example if a message passing scenario is simulated by putting a send and a re-
ceive event in the future event list, then for simulating packet loss it is enough to
randomly ignore some of the receive events in the list. Apparently to have a realistic
model, an appropriate random pattern should be applied.

50 CHAPTER 4. SIMULATOR

We assume topology consists of peer, link, and a core network. As depicted in
Figure 4.4, each peer connects to the core network through a link with a specified
capacity and latency.

LN
-

b
Figure 4.4: SICSSIM-B overall structure

To model bandwidth we draw two random values, from any desirable distribu-
tion, for incoming and outgoing bandwidth of each node. We then use a matrix,
namely bandwidth matriz, to monitor data transfer rate between nodes. Each row in
the bandwidth matrix is associated to one peer in the system and shows the upload
rate of that peer to the other peers at an instant of time. Apparently, sum of the
cells in each row should not be greater than the total outgoing bandwidth of that
peer. Likewise, each column represents the downloading status of peers. Each cell
shows the download rate from another peer and similarly sum of the values in a
column should not be greater than the total incoming bandwidth of the associated
peer. Figure 4.5 shows a sample snapshot of the bandwidth matrix. For instance
node A is uploading 56 Kb of data whiles downloading a total amount of 384 Kb per
second. It is worth mentioning that, we only constrain sum of the upload/download
rates of each node. What is missing is the fact that maximum upload/download
rate between two individual nodes is not only constrained to the endpoints of a
connection, but also to the other links on the route from one to the other. More
exactly the minimum link capacity on this route define the maximum transfer rate
between two nodes.

To model link latency, we calculate the latency between each pair of nodes as
follows. We add the latency of the two links, which connect the peers to the core, to
the latency of the core. The core latency itself consists of two parts: a value, which
is uniquely generated for each pair of nodes, and a random value, which represents
the fluctuation in the network every time a data transfer takes place. Note that for
each of these four elements of calculated latency, an appropriate distribution should
be selected.

4.2. SICSSIM-B 51

Total
Upload

56

Total =
Download

Figure 4.5: Bandwidth matrix shows the download/uploads status of peers in Kbps

In SICSSIM-B we differentiate between the control messages and data messages.
Data messages are the actual that data and can be of any type, e.g. video, audio,
text, images, etc. For the sake of simplicity, we do not transfer real data in the
simulator. We just assume there is a flow of data from node to node with a rate,
specified in the bandwidth matrix, and a latency, calculated for those nodes. Al-
though there is no real data, any change in the bandwidth matrices represents a
change in a data flow. On the other hand, the control messages are considered to
have a very small size which would use zero bandwidth; but they will be queued
in a list, i.e. Future Event List or FEL, which contains all the events of the sys-
tem. Then an event scheduler let the simulator handle the control messages in the
order of their increasing start time. The simulation loop proceeds by selecting the
next event from FEL, executing it and inserting newly generated events in the queue.

As mentioned before, in flow-level modeling we ignore some of the properties of
the underlying layers of network. One of these properties is link congestion. When-
ever a node joins the system, it is assigned a total incoming/outgoing bandwidth.
This incoming/outgoing bandwidth may change during the simulation, because a
node may also use its bandwidth for other tasks, which are irrelevant to our overlay,
so the total download/upload bandwidth of nodes are subject to change, and these
changes may affect the data transfer rate between peers.

We model congestion at nodes’ links as well as the network on the route from
one node to the others. We use a strategy similar to slow-start |2] congestion con-
trol, which is used by TCP. A data transmission between two nodes starts with a
predefined rate. On the receiver side, the node continuously checks the download
rate while considers its available incoming bandwidth. If it has enough free incoming
bandwidth, it sends a message to sender and asks for a higher upload rate. On the
other hand, if sum of the download rates becomes greater than its incoming band-
width, it sends a congestion message to at least one of its uploaders. Upon receiving
such message, the sender decreases the upload rate. To model network congestion,
the core network (Figure 4.4) randomly sends congestion messages to an uploaders

52

CHAPTER 4. SIMULATOR

nodes in system and asks a decrease in the upload rate.

Note that, congestion modeling in SICSSIM-B is a configuration parameter,

which can be enabled or disabled.

4.3 Existing Solutions

In this section, we first look at some criteria to assess peer-to-peer simulators and

then we review nine existing simulators.

4.3.1 Criteria

Stephen Naicken et. al. [35, 36] suggest that a simulator can be assessed by a
number of criteria, which are as follows.

Simulator Architecture: This is a key issue, which has to do design and
functionality of the simulator, and the features it provides, e.g. whether it is
a discrete event simulator; whether it is a flow-level simulator or packet-level;
whether it supports structured or unstructured overlay simulation, or both;
and how these are implemented. Also these criteria include aspects of how
node’s behaviour is simulated, for example whether churn can be specified or
what levels of churn is simulated.

Underlying Network Simulation: There are different approaches to model
the underlying network. The point here is that which properties of the underly-
ing layers are simulated by the simulator. For example whether cross-traffic' is
supported by simulator; or whether it can simulate link latency or bandwidth,
and how realistic the underlying topology is.

Scalability: One the main capabilities expected from peer-to-peer simulators
is scalability. So it is important to consider how scalable a simulator is, i.e.
how many nodes it can support, and how it performs for the large network
size.

Statistics: Outputs and results of simulators is the next issue to be consid-
ered. To have a good statistical analysis, the results should be expressive, easy
to manipulate, and not to mention reproducible.

Usability: This criterion shows how easy the simulator is to learn and to
use. For example, whether the simulator has a clean API that helps users
to understand the protocols and use them easily; whether it supports any
script language to define scenarios, or if any manual or technical document is
provided along with the simulator.

!Other traffic on network, which is not related to the overlay.

4.3. EXISTING SOLUTIONS 53

4.3.2 Simulators Review

It this section we review some of the existing simulators.

e DHTSim: DHTSim [13] is a discrete event simulator for structured overlay
networks. Since it is intended for teaching DHT protocols, it has a clear and
straightforward API, however it is not well documented. This simulator does
not support distributed simulation and node failure. Also its does not have
the capability of extracting statistics. DHTSim is implemented in Java, and
scenarios are specified by using script files.

e P2PSim: P2PSim [41] is a discrete event simulator for structured overlays,
which works in packet level. It is packaged with implementations of six DHT
protocols: Chord [54], Accordion [27], Koorde [24], Kelips [20], Tapestry [69]
and Kademlia [33]. It supports a wide range of underlying network topologies,
but does not support distributed simulation, cross-traffic, and massive fluctu-
ations of bandwidth. It provides a standard tool to help generating graphs
easily, and to summarize all log files into a single statistics file. P2PSim is
implemented in C++ and has a poor documentation. Its scalability has been
tested for up to 3,000 nodes.

e Overlay Weaver: Overlay Weaver [40] is a discrete event simulator for struc-
tured overlays only. It contains implementation of Chord, Kademlia, Tapestry,
Koorde, and Pastry [49]. It does not simulate underlying network, but supports
distributed simulation. Overlay weaver provides users with a good interface
with a few command line tools. Users can define scenarios as a simple script
file. However it does not have any facility to gather statistics. It is imple-
mented in Java with clean API and easy to read source code, but its interface
is not well documented. Moreover it supports up to 4,000 nodes.

e PlanetSim: PlanetSim [47, 16] is a discrete event overlay network simulator
that supports structured and unstructured overlays. It contains the imple-
mentation of Chord and Symphony [32]. The underlying network layer can
be modelled as simple random or circular networks, but it does not consider
latency, cross traffic and bandwidth. PlanetSim uses Common API (CAPI)
[12], which helps the users to develop their own protocols in a layered model,
where services and applications can be built one on top of another. This fea-
ture provides user with the capability to simulate an application layer service
over different overlay networks. PlanetSim does not have any mechanism to
gather statistics, but has a visualizer. It is implemented in Java and a large
amount of documentation is available at its website [47]. The scalability of
PlanetSim has been tested for up to 100,000 nodes.

e PeerSim: PeerSim [45] is an event based simulator for peer-to-peer overlay
networks, which supports both structured and unstructured networks. It is de-
signed for epidemic protocols, with high scalability and dynamism. Hence, it

54

CHAPTER 4. SIMULATOR

avoids the underlying network parameters, such as latency. PeerSim supports
two models of simulation: cycle-based and event-based models. In the former,
the simulator chooses all the nodes at random and invokes each node protocol
in turn at each cycle. In the latter, a set of messages or events are scheduled
in time and the simulator invokes each node protocol according to the mes-
sage delivery time order. PeerSim does not support distributed simulation. It
does not have any debugging facilities, and extra components should be im-
plemented to gather statistics. It is written in Java and users can configure it
using a plain text file. It has a good documentation for its cycle-based simu-
lation, but not for the event-based model. As [36] claims, PeerSim supports
up to 10% nodes in the cycle-based model.

GPS: GPS[66] is a discrete event simulator that supports both structured and
unstructured overlays. It contains an implementation of BitTorrent protocol
[10]. GPS partially models the underlying network topology. It does not model
each packet, but simulates bandwidth and delay for each link and provides
different flow level models. It is implemented in Java and its API is poorly
documented. The scalability of GPS is not measured, but it has already been
used for up to 1054 nodes.

Neurogrid: Neurogrid [39] is a discrete event simulator that can simulate
both structured or unstructured overlays. This simulator was originally de-
signed for comparing Neurogrid protocol, Freenet 9] and Gnutella [56] pro-
tocols. It does not simulate the underlying network. It has facility to gather
statistics for pre-determined variables, but for adding new variables, the code
should be modified. Neurogrid is implemented in Java and has an extensive
documentation on its web. [36] claims that Neurogrid supports up to 300,000
nodes.

Query-Cycle Simulator: The Query-Cycle Simulator [51], is a peer-to-peer
file sharing network simulator for unstructured overlay networks. The simu-
lation process consists of a number of query-cycles. At each cycle, if a peer
is seeking a file, it sends a query to other peers. Whenever a peer receives
a request for a file it poses, it responds to the requesting peer. As the peers
receive the response from other peers, they choose one peer and download a
file from it. The cycle completes when all querying peers download a file. This
simulator is implemented in Java and its API document is available.

Narses: Narses [38] is a discrete event, flow level network simulator. It allows
to model the network at different levels of accuracy and speed. It simulates
the underlying network in four different model, from the least accurate and
fastest to the most accurate and slowest. It computes the available bandwidth
between two peers based on end node bandwidth and does not consider the
network and protocol effect. To gather statistics the source code should be

4.3. EXISTING SOLUTIONS

35

modified. Narses is written in Java, and no document is available for it. It has
been tested for up to 600 nodes.

Figure 4.6 shows a summarized comparison of surveyed simulators with respect
to the defined criteria and Figure 4.7 shows some complementary information about

them.

Simulator Architecture Usability Scalability Statistics Underlying Network

DHTSIim Discrete-avent for structured Simple API, but lack Mot possible -—-
overlay networks of documentations

P2PSim Discrete-event and packet level | Poor documentation 3,000 nodes Limited tool to generate | Supports a wide range
for structured overlay networks graphs and summarize |of underlying networks

log files

Owerlay Discrete-event for structured Good AFI 4,000 nodes Mot possible to gather Mot modelled

Weaver overlay networks documentation, but its statistics

tools are not well
documented.

PlanetSim | Discrete-event for both A large amount of 100,000 nodes | No mechanism to gather |Limited simulation of
structured and unstructured documentation is statistics, but visualiser | underlying network
overlay networks availble for its APl and is available

design.

PeerSim Query-Cycle and Discrete- Only Query-Cycle 10" nodes Components can be Not modelled
event for structured and simulator is (Query-Cycle) | implemented to gather
unstructured networks documented statistical data

GFS5 Discrete-event for both FPoor documentation 1054 nodes - Partially models the
structured and unstructured for its APl underlaying network.
overlay networks

MNeurogrid | Discrete-event for both Good documentation | 300,000 nodes |1t has for pre-determined | Not modelled
structured and unstructured claimed variables, but for others
overlay networks the code shold be

madified
Query- Query-Cycle for unstructured | Only AFI - Not modelled
Cycle Sim. | networks documentation is
available.
MNarses Discrete-event and flow-based | No documentation 600 nodes Yes, but requires A number of underlying
modification of source fopologies, balancing
execution speed and
accuracy
SicsSim-B | Discrete-event for structured In progress Tested for up to | Yes, but requires source | Congestion, latency

and unstructured networks

15,000 nodes
for media

streaming

code modification

and bandwidth are

maodeled.

Figure 4.6: Properties of surveyed simulators

56

CHAPTER 4. SIMULATOR

Simulator Language Status Licence URL
DHTSim Java Aclive GPL Not available
P2PSim C++ Active GPL hitp://pdos.csail. mit.edu/p2psim/
Overlay Weaver Java Active Apache http://overlayweaver.sourceforge.net/
PlanetSim Java Active LGPL http://planet.urv.es/planetsim/
PeerSim Java Active LGPL http://peersim.sourceforge.net/
GPS Java Inactive - Not available
Neurogrid Java Inactive GPL http://www.neurogrid.net/
Query-Cycle Java Inactive Apache http://p2p.stanford.edu/
Narses Java Inactive GPL-Like http://sourceforge.net/projects/narses
SicsSim-B Java Active --- hitp://www.sics.se

Figure 4.7: Complementary information about surveyed simulators

Chapter 5

Evaluation

In this chapter we investigate the performance of ForestCast under various scenarios
and with different configurations. For this purpose, we carried out a simulation-
based study over SicsSim-B.

Simulation results are in three parts. Firstly, we evaluate the effects of different
policies for the heuristics we introduced in Section 3.1. Secondly, we select the best
identified policies and investigate the properties of the overlay when the system
scales. Finally, we examine the impacts of adding an incremental improvement to
the base solution, as we described in Section 3.2. The metrics to be measured are:

e Bandwidth utilization: The ratio of the total utilized upload bandwidth to the
total demanded download bandwidth.

e Time to join: The time it takes for a peer to receive the first segment after it
sends its join request.

e Startup delay: The time it takes for a peer to start playing the media after it
sends its join request.

o Playback latency: The difference between the playback point of a node and
the media point. It shows the time it takes for a peer to play a segment of the

media after that segment is sent out from the media server.

e Tree depth: The largest hop counts from the media server to the peers in a
tree.

e (Quality: The ratio of the number of received stripes to the number of demanded
stripes.

e Disruption: The duration in which a peer does not have any segment of media
to play and so the media is paused.

o7

58 CHAPTER 5. EVALUATION

5.1 Experimental Setting

In our simulations, we assume one single server for maintaining the overlay and one
media server to distribute the media. We also assume the stream is split into four
stripes using MDC, so a peer is able to play the media even with a single stripe.
However, the playback quality increases by receiving more stripes. The bit rate of
each stripe is considered to be 128 Kbps.

Upload bandwidth of nodes follow the measurements in Sripanidkulchai et al.
[53], which is a feasibility study of supporting large-scale live streaming applications
with dynamic application end-points. The authors have used traces from a large con-
tent distribution network and characterized the behavior of users. Figure 5.1 shows
the bandwidth distribution measured in [53]. Note that, in this measurment the
encoding bit rate is assumed to be 250K bps and the outbound degree is normalized
by this value. As a result, almost half of the peers are free riders, that are the nodes
who do not contribute any upload bandwidth. However, since we are using a lower
bit rate per stripe, 128 Kbps, we enable some of the nodes, which are free-riders in
[53], to upload one stripe. On the other hand, we set an absolute maximum bound
of 5Mbps for the upload bandwidth of peers, such that no peer in our simulations
can exceed this limit, even if they have more resources to contribute. For the host
with unknown measurement in Figure 5.1, the authors have proposed three algo-
rithms to estimate the upload bandwidth of nodes. We have chosen the distribution
algorithm, which assigns a random value, drawn from the same distribution as that
of the known resources, to each host.

Type Degree bound Number of hosts Upload bandwidth (Kbps)
Free riders 0 58646 (49.3%) 0-249
Contributors 1 22264 (18.7%) 250 - 499
Contributors 2 10033 (B.4%) 500 - 749
Contributors 3-19 6128 (5.2%) 750 - 4999
Contributors 20 8115 (6.8%) 5000
Unknown - 13735 (11.6%) -
Total - 118921 (100%) -

Figure 5.1: Bandwidth distribution measured in real scenarios

The upload bandwidth of media server is supposed to be 10Mbps. Moreover,
we assume peers have enough download bandwidth to download all the stripes si-
multaneously. Resource Index (RI) is defined as the ratio of the available upload
bandwidth of all nodes in the overlay (including the media source) to the total band-
width demanded by nodes.

5.2. IMPACT OF DIFFERENT HEURISTICS 39

As mentioned in Chapter 4, the connection between two peers consists of three
parts: a core network and two links that connect those nodes to the core network.
Hence, link delay between two communicating peers is calculated as the sum of the
delay in these three parts. Link delays is either 0 or 10ms, with a uniform distribu-
tion. The core network’s delay is generated as a random number, which follows a
normal distribution with g = 75ms and ¢ = 12ms. This value is always the same
for a pair of nodes, but it differs from pair to pair; because we believe in Internet the
delay between two nodes in a connection is usually constant, sometimes with a small
deviation. To mimic this deviation, we also add a forth value, which is either 0 or
10ms, to the total delay calculated for two nodes, every time a packet is transferred
from one to the other. As a result, 95% of delays between two communicating peers
has a value between 20ms and 160ms with a normal distribution.

Three types of event are defined: join, leave and fail. Events are modeled as a
lottery event [63], with a poisson distribution with A = 100, which means the ex-
pected interval between two consequent events is 100ms. In other words, averagely
10 events happen per second.

Moreover, we define three different scenarios:

1. Join only: All the events are join, which means nodes join and stay in the
system.

2. Low rate departure: 20% of the joined nodes leave or fail.

3. High rate departure: 50% of the joined nodes leave or fail.

A node may depart at any moment after it joins. More exactly, there is no
assumption on the order of event types happening in the scenarios including leaves
and failures. Note that, for a low rate departure scenario to end up in a system of
certain size, more events than that of join only scenario should happen. Likewise,
more events than that of the first two scenarios are required for the third scenario to
end up in a network of the same size. Hence, hereafter we use the terms low churn
instead of low rate departure, and high churn instead of high rate departure.

All the presented results are the average of at least 10 runs and the error bars,
where shown, denote that we are confident that 95% of the these values are in the
shown interval.

5.2 Impact of Different Heuristics

In this section, we introduce a number of heuristics according to what we discussed
in Section 3.1. We then apply them to build up on overlay and investigate the
properties of the resulting overlay. These heuristics are about:

e How to collect the nodes,

60 CHAPTER 5. EVALUATION

e How to select appropriate parents,
e What the startup segment is, and

e How long the buffering delay is.

In the following experiments, we conduct the simulation for low churn and high
churn scenarios. The number of nodes, remaining in the system, when the scenario
is over, is 2048.

5.2.1 Node Collection

Here, we observe how the overlay is influenced by the policy the server follows to
select the open nodes according to Algorithm 1. We compare two policies. In the
first policy, called BES policy, the central server always selects the peers in Breath
First Order. In the second policy, called BFS-DFS policy, the central server consid-
ers the upload bandwidth of the joining peer, and uses Depth First Order for free
riders and BFS for other peers.

In BFS policy we start from top of the trees, where the media server is placed,
and traverse them in BF'S order. Hence, the peers, regardless of their properties, are
placed as close as possible to the media server. In the BFS-DFS policy, we do not
insist on placing the free riders close to the source. In contrast we try to put them
somewhere further, not only by using a DF'S traversal to collect the open nodes, but
also by selecting the worst possible position for them.

The experiments show that we have shallower trees when we use BFS-DFS pol-
icy. This is because we have a remarkable number of free riders in the system, who
can fill the upper layers of the trees and leave us with some narrow deep paths, if
we apply BFS policy. On the other hand, if we use BFS-DFS policy, we lessen the
probability of free riders cut off the subtrees at the layers close to the root.

Figure 5.2 shows the Cumulative Distribution Function (CDF) [11] of playback
latency for these two policies in low churn and high churn scenarios. In this figure,
the Y-axis shows the fraction of nodes in the system, and the X-axis shows the
playback latency. We can see that the playback latency of peers when we are using
BFS-DFS policy is lower than playback latency of peers with BFS policy. For exam-
ple, in low churn scenario with BFS-DF'S policy, 95% of peers have playback latency
less than 2000ms; while in the same scenario with BFS policy, the same fraction of
peers have playback latnecy less than 3000ms. In high churn scenario, although BFS
policy shows a better result in the beginning, finally BFS-DFS policy outperforms
it, such that 95" percentile happens at 3900ms and 5200m.s for BFS-DFS and BFS
policies, respectively.

5.2. IMPACT OF DIFFERENT HEURISTICS 61

Flayback latency

100

a0

E0

40

Fraction of nodes

20]

BFS-IFS policy {low churn) ——
BFS policy (low churn)
BFS-DFS policy thigh churn) —s—

BFS policy (high churn) —s—

] 1060 2000 2000 4000 G000 B0
Flayback latency (ms)

Figure 5.2: Playback latency of system for 2048 nodes for two cases of selecting open
nodes by BFS-DFS policy and BFS policy (low churn and high churn)

Likewise, the quality of peers is improved by using BFS-DFS policy. Figure
5.3 is the CDF of quality received by peers with the two policies in low churn and
high churn scenarios. In this figure, the Y-axis shows the fraction of nodes and
the X-axis shows the percentage of received quality. We can see that in low churn
scenario 78% of peers in BFS-DFS policy receive the stream with average quality
more then 98% during their lifetime; while in the same scenario with BFS policy
this is achieved in 72" percentile. Similarly, in the high churn scenario, BFS-DFS
policy is more desirable than BFS policy and we have the minimum quality of 80%
at 75" percentile in BFS-DFS policy and 65" percentile of peers in BFS policy.

5.2.2 Parent Selection

In this section, we study how ForestCast selects the supplying peers. After finding
a set of open nodes as candidates, we should select one peer as a provider for each
stripe. As mentioned in Section 3.1.1 we use a priority function to assign a value to
each peer according to its properties.

One important heuristic on selecting parents is the fair distribution of stripes
between parents. Suppose we have two stripes in the system, stripel and stripe2
and P can provide both of them, and also consider P is the only open node who
posses stripe2. In this example if P uses all its upload bandwidth to transfer stripel
then stripe2 will become unavailable in the system.

To see the result of fair distribution of stripes on the overlay we define two poli-
cies. In the first one, called Rarest Stripe policy, we define the priority function by

62 CHAPTER 5. EVALUATION

Ouality

100 T

BFS-DFS policy (low churn) ——
BFS policy {low churn)

BFS-DFS policy thigh churn) —s—
BFS policy (high churn) —e—

a0

B0

40

Fraction of nodes

20

0 20 - .. =)

Percentage of received quality
Figure 5.3: Quality of received media for 2048 nodes for two cases of selecting open
nodes by BFS-DF'S policy and BFS policy (low churn and high churn)

considering fanout of peers in each stripe tree as fg%' The fanout, f, in each tree
shows the number of peers that a peer is sending stripe to them. Considering fanout
in priority function means that a peer who sends fewer number of one stripe, gets
a higher value for forwarding that stripe. In the second policy, we ignore fanout of
peers and define the priority queue as Il’—:. We call this policy, Any Stripe policy. We
compare these two policies for 2048 peers in low churn and high churn scenarios. The
results show that in 30% of experiments, by using Any Stripe policy, at least one of
the stripe trees are saturated before all peers can join them, while we do not have
this problem in case of using Rarest Stripe policy. By saturating each stripe tree,
a group of peers can not join it and respectively can not receive that tree’s stripe,
and it causes the quality of received media decreases. So for the rest of evaluations
we use Rarest Stripe policy.

Another important heuristic to find parents is distinciness between providers.
We define two policies: In the first policy, called Non-Distinct Parents policy, each
candidate peer who has higher priority has a more chance to be selected as a provider.
In the second policy, in addition to peers’ priorities, selecting distinct providers is
also important. In this policy, called Distinct Parents policy, we avoid selecting
repetitive parents in different stripe trees, if it is possible. For example, suppose for
a node P, we are trying to find two providers for two stripes stripel and stripe2. If
peer Q is selected as the provider for stripel, due to its high priority, then we try
to find another provider, like peer R, for stripe2, even if @) still has higher priority
than R. Only when there is no other open node, which can provide stripe2, we
choose (Q once more.

5.2. IMPACT OF DIFFERENT HEURISTICS 63

Quality
100

Distinct Parents policy {low churn) ——
Mon-Distinct Parents policy (low churn)

Distinct Parents policy (high churn) —s—
Mon-Distinet Parents policy (high churn) —=—

a0

i

Fraction of nodes

40

20

] &0 . 40 B0 a0 100
Percentage of received quality

Figure 5.4: Quality of received media for 2048 nodes in cases of having Distinct

Parents and Non-Distinct Parents policies (low churn and high churn)

The results show that the number of disrupted nodes with Distinct Parents pol-
icy is fewer than Non-Distinct Parents policy. By using the latter one, it is possible
that one peer is selected as the provider for all the stripes of another peer. In such
case if that provider fails, the peer fails to receive all its stripes. However, since we
have selected different providers for different stripes in Distinct Parents policy, the
probability of missing all the providers at the same time is less. In low churn scenario
with Non-Distinct Parents policy, averagely 9 peers out of 2048 are disrupted, while
it is less than 2 peers with Distinct Parents policy. In high churn these numbers are
about 160 peers and 80 peers, respectively.

With a similar argument, we expect to have a higher quality in the second policy,
which is confirmed in Figure 5.4. This figure shows CDF of quality received by 2048
peers in low churn and high churn scenarios. As we can see, in low churn scenario
with Distinct Parents policy, about 75% of peers have a minimum quality of 98%,
while with Non-Distinct Parents policy, about 70% of peers have the same quality.
In high churn scenario with Distinct Parents policy, about 80% of peers have a
minimum quality of 75% but this is achieved in about 70% of peers in Non-Distinct
Parents policy.

5.2.3 Startup Segment

Startup segment determines a specific point of the media that a peer can start to
play. This segment number is the first segment providers send to the peer. Whenever
the providers of a peer are selected, they should agree on startup segment number.

64 CHAPTER 5. EVALUATION

In this heuristic, we study the effect of selecting different startup segments on the
quality of stream.

We consider two policies to select startup segment. In the first policy, called
Head-Segment policy, the minimum of head of buffers in providers are considered
as the startup segment (Figure 5.5). In the other policy (Figure 5.6), we first find
the range of common segments in the buffer of all providers, and then choose the
segment in the middle of this range. We call this policy Mid-Segment policy.

Figure 5.5: Minimum of head of buffers is selected as startup segment

Figure 5.6: average of minimum of head of buffers and maximum of tail of them is
selected as startup segment

By using Head-Segment policy, the playback latency, which is the difference be-
tween playback point of the media server and a peer, is less. It is because the selected
segment number is the closest one to the most recent segment delivered by the media
server. This is confirmed in Figure 5.7, which shows the CDF of playback latency
for 2048 nodes for two policies. For example in low churn, about 95% of peers have
playback latency less than 1900ms by Head-Segment policy, but 50% of peers have
a higher playback latency in Mid-Segment policy. Likewise, in high churn scenario,
only 10% of peers have playback latency more than 2100ms by using Head-Segment
policy, whereas 50% of peers with Mid-Segment policy have a playback latency more
than 2100ms.

5.2. IMPACT OF DIFFERENT HEURISTICS 65

Flayback latency

100

a0

B0

40

Fraction of nodes

20

Head-Segment. policy (low churn) ——
Hid-Segment policy (low churn)

Head-Segnent policy (high churn) —s—
Hid-Segment policy (high churn) —=—

] 1060 2000 3000 4000 G000 GO0 OO0 8000
Playback latency (ms)

Figure 5.7: Playback latency of 2048 nodes for Head-Segment and Mid-Segment
policies (low churn and high churn)

We also expected that by using Mid-Segment policy, the peers become more
tolerant to the failure. Suppose P is providing stripel for @) and @ provides that
stripe for R. If we use Head-Segment policy then if P fails, () does not have any
other segment of stripel in its buffer to send to R, whereas by using Mid-Segment,
Q@ still has some segments to forward to R. Hence, a better quality is expected by
using Mid-Segment policy. Surprisingly, the simulation shows that this argument is
not valid. Figure 5.8 shows the CDF of quality for the two policies. In low churn
scenario, with Head-Segment policy, about 80% of peers receive a minimum quality
98%, while 70% of peers get the same quality, in Mid-Segment policy. Similarly in
high churn scenario, about 70% of peers receive 98% of quality and more by using
Head-segment policy, but only 40% of peers receive the same quality. In ForestCast,
the central server selects the startup segment or the common segment on providers
by using its local information. Peers update this local information periodically.
Meanwhile the peers update their information, the central server predicts the state
of peers by their last information, and because of this, it is possible that it estimates
the common segment wrong. For example, in Mid-Segment policy, it is possible that
the selected segment number is smaller than the segment received by providers of
the peer. In this case when the providers receive the server instruction to send that
segment, they find out that their earliest segment in their buffer is bigger than the
requested segment, so they start to send from the smallest segment number in their
buffer. So by happening this scenario, the providers send different startup segment
instead of a common segment, and it reduces the overall quality. The probability of
happening this situation is lower in case of using Head-Segment policy.

66 CHAPTER 5. EVALUATION

Ouality
100

Head-Segment. palicy (low churn) ——
Hid-Segment. policy {low churn)

Head-Segment policy (high churn) —s—

Mid-Segment policy (high churn) —a—

Fraction of nodes

40 [:11]

Percentage of received quality

Figure 5.8: Quality of received media for 2048 nodes for Head-Segment and Mid-
Segment policies (low churn and high churn)

5.2.4 Buffering Delay

Although each peer can start to play the media as soon as it receives its startup
segment. It buffers the media for a while before playing it. The duration of buffer-
ing, called buffering delay has an important effect on the quality of the playback. In
this study we change the time of buffering from 200ms to 3200ms, and measure the
change in quality and playback latency.

Figure 5.9 shows the CDF of playback latency and Figure 5.10 shows the CDF of
quality received by peers. As we can see in Figure 5.9, the playback latency of peers
increases by spending more time on buffering the stream before playback, but as
Figure 5.10 shows, this will result in a better quality. For example for T = 200ms,
the playback latency of 80% of peers is less than 1000ms, while this time is about
4800ms for T' = 3200ms. In Figure 5.10 however, we can see that more than 95%
of peers in T = 3200ms have a minimum quality 98%, but for T = 200ms, only
60% of peers have the same quality. That is because peers have more time to find
substitute providers, is case of failure of any providers. To conclude, deciding about
buffering delay is a trade of between quality and palyback latency of media stream.

5.3 Measurements at Scale

In this section, we demonstrate the behavior of ForestCast when the number of
participating nodes increases. We start from 128 nodes and at each step double the
size of the nodes in the overlay. In the following simulations we use the following
heuristics and settings:

5.3. MEASUREMENTS AT SCALE 67

Fraction of nodes

Figure 5.9:

(join only)

Playback latency

100
80 F
60 F
40 F
20F
T = 200 mg ——
T = 400 ms
T = 800 mg ——
T = 1600 ms —=—
o . -) . . . T = 3200 ms
0 1000 2000 2000 4000 5000 B0 TO00]

Playback latency (ms)

Playback latency of peers for 2048 nodes for different buffering delay

Ouality
100

T = 200 mg ——
T = 400 mg
T = 800 ms —w—
T = 1600 mg —a—
T = 3200 mz
80

iy

e

40

Fraction of nodes

20

0 20 40 EO0 80 100

Percentage of received quality

Figure 5.10: Quality of received media stream for 2048 nodes for different buffering
delay (join only)

e We use BFS-DF'S policy, for node collection;

e The value assigned to candidate providers is defined as fé’% (Algorithm 5).
Note that a node may get different values in different trees;

68 CHAPTER 5. EVALUATION

e To select parents we use Distinct Parents and Rarest Strip policies;
e The central server uses the Head-Segment policy to find the startup segment;

e The buffering delay is 400ms.

5.3.1 Bandwidth Utilization

Bandwidth utilization of the system is defined as the ratio of the total utilized upload
bandwidth to the total demanded download bandwidth. Measurements show that
bandwidth utilization of ForestCat is nearly 1 for all three scenarios, and for varying
number of nodes. Note that a media streaming application is a bandwidth intensive
application, therefore it is of great importance to utilize the bandwidth of peers as
much as possible. If this value is less than 1, that would mean although there are
peers who have free upload capacity, there are some other peers who can not receive
some part of the media they request for. This might be either because the free peers
cannot be identified, or they might not posses the requested data. The former is
easy to be solved by a server who knows about all the peers in the overlay, but the
latter is not that trivial. In ForestCast the server tries to distribute distinct stripes
evenly in the system in order to prevent the latter problem. That is why the fanout
of peers in different trees is taken into account and each peer prioritize forwarding
its rarest stripe to a new child. Moreover, fragmenting data at the first place and
using multiple trees are also important to achieve this high bandwidth utilization,
because it makes it possible for peers with petty upload bandwidth to contribute
some resource to the system and be helpful.

5.3.2 Tree Depth

The depth of trees is another metric that is important to us for several reasons.
Firstly, we are interested in shallow trees because generally nodes in such trees are
more resilient to damages in the structure i.e. failure of an interior node. Secondly,
in shallow trees the average value for the playback latency is expected to be less than
that of deep trees, because in shallow trees larger number of nodes are positioned
closer to the media server. On the other hand, upload bandwidth of nodes and the
order in which they enter the system, highly affects the depth of trees. For example
if a number of free riders join the overlay at the beginning, then it is more probable
for the overlay to have deep narrow trees. It is the responsibility of the central server
to mitigate such problems and avoid building deep narrow trees, if possible.

In order to investigate the efficiency of our solution with this regard, it is impor-
tant to see how the trees’ depth grows when the system scales to the larger number
of participating nodes. Figure 5.11 shows how the average depth of trees change
when system size grows, for our three different scenarios, i.e. join only, low churn

5.3. MEASUREMENTS AT SCALE 69

and high churn. Note that, the Y-axis is presented in logarithmic scale.

Avg of tree depth

Tree depth

Jjoin only ——
Tow churn 208 —s—
high chldrn G

1000 2000 3000 4000 SO0 EO00 000 2000

Humber of peers

Figure 5.11: Average tree depth in ForestCast increases in a logarithmic scale when
the network size grows

An interesting thing in this figure is that in high churn scenario the average tree
depth is lower than the other two. Likewise, the low churn scenario has a lower
growth rate than join only scenario for greater network sizes. We believe this is
because peers, whose parents fail or leave, rejoin the overlay and may find a better
position than their initial one. In other words the server is given a chance to revise
its previous decisions and as a result trees evolve to a more desirable structure. This
result motivated us to work on some kind of gradual modifications, when nodes are
given a chance to bubble up the trees and find a better position in the overlay. As
a result we came up with Section 3.2 on incremental improvements and Section 5.4
on its corresponding evaluation.

5.3.3 Startup Delay

Startup delay is the time it takes for a node to start playing the media after it sends
its join request. This time consists of two parts. First is the time it takes for the
node to recieve the first segment of media in at least one stripe, called join delay . It
is good to recall that we assume MDC, which enables nodes to play the media even
with a single stripe. Second is the time the node waits and buffer the media before
playing it, called buffering delay. We assume that all nodes have the same buffering
delay, that is 400ms in the following simulations. So we only need to measure the
join delay. Since we are using a central server to handle the join requests, we expect
this time to be independent of the size and shape of the overlay. This is confirmed
by the result of the simulation, which is shown in Figure 5.12. We can see that for

70 CHAPTER 5. EVALUATION

large number of peers, this time is almost a constant in all three scenarios. Indeed,
this time is sum of (i) the time required for the new node to contact the server, (ii)
the time it takes for the server instructions to be received by selected parents of the
new node, and (iii) the time it takes for the first segment to be transferred to the
node.

Time to join
200

195 |

130 \

185

130 XY

175 1

170 \

165 F

Time to join (ms)

Join only —— 1
low churn 208 —s—

] high churn 50X
1000 2000 3000 4000 G000 BO00 FO00 8000

Number of nodes

160

Figure 5.12: Average time it takes for a peer to join (join only, low churn and high
churn scenarios)

It is worth mentioning that, the total startup delay is almost always a value less
than 600ms, which is insignificant compared to the measured startup delay in some
of the successfully deployed solutions. For example, this value is reported to be aver-
agely between 20 and 30 seconds for popular channels and up to two minutes for less
popular channels in PPLive [22] and between 10 and 20 seconds in Coolstreaming
[65]. As peers spend more time to buffer the data, they will be more resilient to
failure of their parents. This is because in case a parent fails, the peer still has some
data in its buffer to play. Hence, our next results for quality and disruption metrics
would be comparable to the existing solutions only if this parameter is configured
similarly. However, we do not change the buffering delay in our next simulations.

5.3.4 Playback Latency

We desire that nodes play nearly the same point of the media with negligible la-
tencies to the media source. There are two things that affect the playback latency:
(i) the buffering delay, which is the time each peer waits to buffer the data before
playing it, and (ii) the position of the peer in trees. We talked about the buffering
delay in Section 5.3.3 and mentioned that it influences the startup delay as well.

5.3. MEASUREMENTS AT SCALE 71

Here again, we assume the buffering delay is 400ms. The difference between startup
delay and playback latency is that, in the former we measure the time required for
the node to play its first segment of the media, no matter what segment it is; whereas
in the latter we are interested to see what point of the media is being played at a
node and how much behind it is from the point of the media, which is currently
broadcast by the media server. In other words, here we want to measure how long it
takes for a node to play a segment of the media after that segment is sent out from
the media server. Apparently this depends on how far the node is from the media
server, that is the position of the node in the overlay.

In the following simulations we not only measure the average playback latency
of nodes in the overlay, but also observe the fraction of nodes experiencing different
playback latencies.

Figure 5.13 shows the average playback latency of nodes for join only, low churn
and high churn scenarios. Apparently when the number of peers in system increases,
the average playback latency of peers also increases. That is because when the num-
ber of peer grows, depth of the trees expands and so the number of nodes that
are positioned further from the media server increases. What is more, we can see
in Figure 5.13 that the best value is achieved in low churn scenario and the value
in join only and high churn scenarios change very closely. Interestingly, for larger
number of nodes the value in the high churn scenarios tends to be even better than
that of join only scenario. We believe the reason is that in the join only scenario,
shape of the overlay is highly affected by the order in which nodes come into the
system, which in turn influences the average playback latency. In this scenario the
playback latency constantly increases as we go down the trees. But in the presence
of churn nodes have to move up or down the trees, when their parent leaves or fails.
So there is a chance for nodes to improve their position. FEven if they have to move
down a tree, then that tree would not have an increasing playback latency as you
go to the deeper layers. This would be beneficial for new arriving nodes, because
they may have a better playback latency than that of what is expected for the layer
in which they are placed. Moreover, if the churn rate increases, then some of the
nodes may face disruption which would increase their playback latency. This result
is interesting, because it persuades incorporating an incremental improvement in the
solution, which gradually modifies the structure of the trees.

Figures 5.14, 5.15, and 5.16 show the CDF of peers experiencing different levels
of playback latency in join only, low churn and high churn scenarios, respectively.
As we can see in the join only scenario, for 128 nodes, 97" percentile happens at
100ms, which is reasonable; but as the network size grows, this value has a signifi-
cant increase, such that 97" percentile for 8192 nodes is nearly 4500ms. Even the
90" percentile happens at 4000ms.

Figure 5.15 demonstrate a more desirable growth in playback latency when the

72

Figure 5.13:

Figure 5.14:

scenario)

CHAPTER 5. EVALUATION

Fug of playback latency
3000

jniln anly ——
low churn 20 ——
high churn 50Z

2500

2000

1500

Flayback latency (ms)

1000

G000

10060 2000 3000 4000 G000 BO00 FO00 000

Munber of nodes

Average playback latency (join only, low churn and high churn scenarios)

Playback latency {join only)
100 T r

80 F

E0F

Fraction of nodes

wl

0

0 1000 2000 3000 4000 SO0 BO00
Playback latency (ms)

Fraction of peers experiencing different playback latencies (join only

number of nodes increases in the presence of a low rate churn. For example for 8192
nodes, 90" and 97" percentile happens at 2200ms and 3200ms, respectively. Note

that, these levels of playback latency for the same network size are achieved at 4

5th

and 75" percentiles in join only scenario.

This comparison becomes more interesting as we come to Figure 5.16, which

5.3. MEASUREMENTS AT SCALE

Flayback latency (low churn 20%)
100

73

anf

ED

40}

Fraction of nodes

i

0 1000 2000 3000

Playback latency (ms)

4000

Figure 5.15: Fraction of peers experiencing different playback latencies (low churn

scenario)

shows the same measurement in the high churn scenario. We can see that for 8192
nodes, 90" and 97" percentile happens at 3800ms and 5200ms, respectively. Note
that although the curve has a longer tail compared to join only scenario, it rises
more sharply than that of join only scenario. Hence the average value for playback
latency is better than that of join only scenario when the number of nodes grows.

Playback latency (high churn S0%}

100 e
Faa

-y‘f“!PZAZE 5

0 F

B0 F

Fraction of nodes

40

U

2000 4000 5000
Flayback latency {ms)}

] 1000 2000

E000

T000

8000

Figure 5.16: Fraction of peers experiencing different playback latencies (high churn

scenario)

74 CHAPTER 5. EVALUATION

5.3.5 Received Quality

In this section, we measure the quality of media received by peers. Quality is defined
as the ratio of the number of received stripes to the number of demanded stripes.
Note that, the quality may change over time, due to the failure of parents, which
may cause the peer not to receive one or more stripes for a while. Hence, we measure
it segment by segment during the lifetime of peers in the overlay. It is worth men-
tioning that we have prioritized “not having disruption” over “having a low quality”.
That is, for a node to proceed to playback, having a single stripe is enough, even
though the quality degrades. But if for a certain point of media, there is no segment
available from any of the stripes, then we would have a disruption. We will shortly
be back to this latter metric and for now, we only focus on the quality metric, which
does not include the disruption intervals.

In order to evaluate quality, we not only measure the average quality received
by nodes, but also demonstrate fraction of nodes receiving different levels of qual-
ity. Figure 5.17 shows the average quality received by peers in our three scenarios.
Not surprisingly, in join only scenario, all peers receive all stripes they have asked
for. But as the failures start to happen, e.g. in the low churn scenario, there are
nodes that miss some of the stripes and so their quality decreases. As the number
of failures increases, e.g. in the high churn scenario, the average quality lessens even
more. An interesting point here is that in all the scenarios, increasing the number
of peers does not dramatically change the average quality. Even when the network
size exceeds 8000 nodes in the high churn scenario, the average quality never falls
below %85.

Fvg quality

108

100 k

Quality

95}} }

g0

Jjoin only ——
low churn 20 —s—
high chu.r"n G

1000 2000 3000 4000 G000 E00G 000 8000

Humber of nodes

a5

Figure 5.17: Average quality received by nodes (join only, low churn and high churn
scenarios)

5.3. MEASUREMENTS AT SCALE (0]

Figures 5.18 and 5.19 show the CDF of peers receiving different quality for low
churn and high churn scenarios, respectively. Note that in the join only scenario,
which is not shown here almost all the peers have quality more than 98% and this
quality does not change by increasing the number of peers in the system.

Quality (low churn 20%)
100

N
N

80 F N = 4036 —=— -
N

60 f

a0

Fraction of nodes

U

0 20 40 i

Percentage of received quality

Figure 5.18: Fraction of nodes receiving varying levels of quality (low churn scenario)

As Figure 5.18 shows, more than 80% of node receive a nearly full quality of the
media during their lifetime regardless of the network size. The other 20 percent-
age of nodes have a quality between 75% and 100%. Since we have four stripes in
the system and almost all nodes have enough download capacity to receive all four
stripes, this result means that all the nodes receive at least three out of four stripes.

Figure 5.19 shows a similar trend. In the high churn scenario, nearly 70% of
nodes receive all four stripes, and the rest receive three out of four, which results
in a quality between 75% and 100%; except for the network size 8192. Even in this
last case, half of the nodes receive all four stripes and the other half receive at least
two out of four stripes.

5.3.6 Disrupted Nodes

Disruption is the duration a peer does not have any segment of media to play. A
disruption ends as soon as the next segment becomes available at the peer. Figure
5.20 shows the number of disrupted nodes in all three scenarios. As we can see, in
join only scenario we do not have any disrupted node and in low churn scenario for
8000 nodes less than 0.1% of nodes are disrupted. We have the most number of
disrupted nodes in high churn scenario and with 8000 nodes. In this case we have

76 CHAPTER 5. EVALUATION

Ouality (high churn 50}
100

0

E0F

Fraction of nodes

-----------------------:'::':' 80 80 100

Percentage of received quality
Figure 5.19: Fraction of nodes receiving varying levels of quality (high churn sce-
nario)

about 200 disrupted nodes, which is about 2.5% of nodes in system.

Disruptions may have different severity levels. We believe a long disruption is
worse than several short disruptions. In order to take into account how sever a
disruption is, we use a counter, which counts the time units the media is paused.
When the playback is resumed, we raise the measured time to the power of two
and add it to a total variable for disruption severity, and reset the counter. This
new metric, called disruption severity, shows the harshness of disruptions at a peer
during its membership in the overlay. Disruption severity is more sensitive to long
disruptions, because they are magnified by power of two. For example, suppose the
media stream has 1000 segments. If a peer misses 100 non-consecutive of the whole
media, its disruption severity is 100. A peer, which misses 10 consecutive segments
has the same disruption severity.

Our measurement for disruption severity, which is not presented in the document,
shows that very few nodes suffer from noticeable disruptions. In the worse case, the
disruption severity is less than 100 for a media stream with 10000 segments, which
is equal to missing 10 consecutive segments or 100 non-consecutive segments.

5.4 Impact of Incremental Improvement
Up to here, we have not considered any improvement in the overlay. We repeated

some of the above simulations while incorporating the incremental improvements,
which we described in Section 3.2. Moreover, in order to choose a node to leave or

54. IMPACT OF INCREMENTAL IMPROVEMENT 7

Aug number of disrupted node

300 T T
Jjoin only ——
low churn 208 —s—
high churn 50Z

250 F

200 F

150 F

Mumber of disrupted nodes

100 F

L<ieg

10060 2000 3000 4000 G000 EO00 FO00 8000

Humber of nodes

Figure 5.20: Average number of disrupted nodes (join only, low churn and high churn
scenarios)

fail, we use a pareto distribution [44] with parameter values 1 for location and 0.5
for shape. As a result, the simulator chooses an older node with less probability
than a younger node, for the purpose of the leave or fail.

Results show that in all three scenarios (join only, low churn and high churn) the
average tree depth is nearly less than half compared to when we had no improve-
ments. As described before, tree depth is an important factor. Having shallower
trees not only lessens the vulnerability of nodes to churn in the trees, which in turn
increases the quality and decreases the probability of having disruption, but also
influences the average playback latency of nodes. It is worth mentioning that, this
improvement may not be in favor of some of the nodes, i.e. the nodes that are
pushed down a tree. These nodes may experience some quality degradation or even
disruptions; but our measurements show that the average value for received quality
improves.

Chapter 6

Future Work

We believe that the idea in ForestCast can be used in either a centralized or a de-
centralized model. In the centralized model, as we discussed, a central server is
responsible for building and maintaining the data overlay. In decentralized model
nodes are given a partial view of the network and they actively cooperate with their
neighbors to send and receive different stripes. In this chapter we introduce our idea
to extend ForestCast to a decentralized solution, which we believe can be further
improved.

In the decentralized approach we use similar heuristics to build up the trees and
maintain the overlay, but without the assumption of a global knowledge. Instead,
nodes maintain local views of the network and they participate in making decision
to send or receive data. We assume that media is fragmented into data segments,
which are numbered by the media server sequentially. In this algorithm, we use
hierarchical-like model to find supplying peers and use push-pull model to deliver
data.

Finding Supplying Peers
To find supplying peer, we need to explain the meaning of local state (LS) of a node
and its global state (GS). The local state of each node ¢ is defined as follow:

LS(i) = ®;(bi, i, fi)

®; is a function of node i’s available upload bandwidth, b;, its latency to the media
source, l;, and its fanout, f;. We define the global state as follow:

GS(i) = ©,(LS(i), GS(ch;))
O, is a function of local state of node i and global states of its children. Each

node periodically sends its global state to its parent. When a node receives its chil-
dren’s global state, it calculates its own value and sends it upward till it hits the root.

79

80 CHAPTER 6. FUTURE WORK

Whenever a new node comes into system at first, it contacts the rendezvous point
to get a list of nodes as its neighbor set, and then it sends its join request to the
media server. If the media server has enough free bandwidth, it accepts the new
node as its own child. Otherwise it forwards the join request to its best child to adopt
the new node. The best child is the node who has the highest global state value
among others. The node that receives a join request will do the same until someone
accepts the joining node. Through the join procedure, the new node updates its
neighbor set, considering the neighbor set of nodes on the path. Experiments show
that the size of this neighbor set does not need to be very large. In [55] it is shown
that having a neighbor set of size 8 would suffice, but the authors suggest a neigh-
bor set of size 20. In our model, we consider the size 10 for neighbor set of each node.

Data Delivery

We believe that the best mechanism in data delivery is a push-pull model. For this
to work, we assume the media server fragments the media into data segments. Data
delivery has two phases: in the first phase, the data segments are pushed down
the tree, and in the second phase the nodes pull the missing segments from their
neighbor set. Each node periodically sends its data availability information to its
neighbor set. We use tit-for-tat strategy to motivate the peers to cooperate in data
delivery.

Optimization

The idea of optimization is the same as what we propose for centralized model. We
desire nodes with higher bandwidth to be placed closer to the source, but this can
be risk if the node is not that reliable. On the other hand we know that a node
which has long stayed in the overlay is less probable to leave the overlay. like Section
3.2, we define the strength of each node as a function of node’s age, its free upload
bandwidth, and the its fanout:

Strength(A;) = agea - (fanouta, + freeBwa,)

A node periodically sends its strength value to its parent. If a node finds out its
strength is smaller than that of one of its children, it changes its position with that
child. The strong child then accepts its old parent and its old siblings as its children.
If it does not have enough free upload bandwidth to keep all of its old children, it
releases the weaker one. Orphan children will be either adopted by the demoted
parent or rejoin the system.

As a result eventually we will have more reliable nodes with more bandwidth
closer to the source. Note that when a node jumps up the tree, its latency to the
media source will decrease, but it will not have any effect on the playback latency.
The only effect is that the node would have more time to buffer the data. This
would not only result in a better quality of the media the node is receiving but also
it would be more tolerant to the failure of its parent or ancestors.

Chapter 7

Conclusion

In this document we worked on peer-to-peer live streaming systems, reviewed differ-
ent solutions in the field and proposed ours. Mainly this thesis, we focused on three
topics: (i) designing an algorithm for peer-to-peer media streaming, called Forest-
Cast, (ii) implementing a stochastic discrete event peer-to-peer simulator, which also
models bandwidth and link latencies, called SICSSTM-B, and finally (iii) investigat-
ing how different heuristics will affect the quality of service experienced by clients.

ForestCast

There are different methods in peer-to-peer systems to construct overlay network
and deliver data to peers. ForestCast uses a centralized directory to construct and
maintain the overlay, and multiple trees for data delivery. Our proposed solution,
differs from the existing solutions in that we solve the problem using a heuristic
technique. ForestCast provides a framework, which can be configured with different
constraints and objective functions. In other words, we choose a performance centric
approach that easily adopts to various design goals. So this solution can serve a wide
range of media providers, who have their own requirements, priorities and objectives.

SICSSIM-B

As mentioned, currently there very few peer-to-peer simulators available. These
simulators either have to consider all the details of packet transmissions in network,
which makes them barely scalable for simulating huge number of data packets, as
it is required in media streaming, or they have to abstract all the underlying layers
of network, which leads to inaccurate measurements. Hence, to evaluate our algo-
rithm, we developed our simulator, called SICSSIM-B. Since our application involves
high bandwidth data transfer, we choose a flow-level model to be able to conduct
experiments at large scale. To deal with inaccuracy we improve this model by in-
corporating some of the effects of the underlying network, e.g. latency, bandwidth
and congestion.

81

82 CHAPTER 7. CONCLUSION

Investigation different heuristics

We investigate different heuristics for constructing overlay network. What is desired
in all the existing algorithms, is to construct and maintain an efficient data delivery
overlay, but there is no common definition for being “efficient”. This is why the
algorithms are not fairly comparable to one another. If we use a central server with
global knowledge, which can quickly make the best possible decisions with respect
to certain criteria and objectives, we will end up in an optimum overlay for the
respective configuration.

Our experiments show that for positioning nodes in the trees, it is very important
to consider the properties of the joining nodes. For example it is a wise decision to
put nodes with petty bandwidth as far as possible from the media source, by using a
Depth First Search policy. Even during the lifetime of an overlay, incorporating an
incremental improvement, which pulls the stronger nodes up the trees and pushes
the weaker nodes down, will result in a more efficient overlay. Note to be taken,
that a strong node is not only a node with a high bandwidth, but the one who has
also stayed long in the system.

We also observe that to maximize bandwidth utilization, it is of crucial impor-
tance to uniformly distribute different parts of the media, e.g. substreams, in the
overlay. For example, nodes are better to prioritize forwarding a substream, which
they have forwarded less. A fair distribution of data in the overlay, prevents a situ-
ation in which some part of the data becomes rare, and even though there is a free
capacity in the network for data delivery, data is not accessible and the bandwidth
can not be utilized.

What is more, we show that selecting distinct parents for a node, makes it more
fault tolerant and will decrease the number and severity of disruptions nodes may
ever experience.

Another interesting result we come up with, is that a greedy approach to choose
the startup segment for a joining node, would result in not only a better playback
latency, but also, surprisingly, a better quality. More exactly, although one may
think starting with an earlier point of the media would make a node more fault
tolerant, we conclude that it is always better to provide the nodes with the most
recent data available, that is the largest segment all the parents have in common.

Bibliography

[4]

7]

9]

GONG An, DING Gui-guang, DAI Qiong-hai, and LIN Chuang. Bulktree: an
overlay network architecture for live media streaming, 2006.

Fast Retransmit And. Network working group w. stevens request for comments:
2001 noao category: Standards track january 1997 tcp slow start, congestion
avoidance,.

Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-
able application layer multicast. In SIGCOMM ’02: Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 205-217, New York, NY, USA, 2002. ACM.

A R. Bharambe, S.G. Rao, V.N. Padmanabhan, S. Seshan, and H. Zhang. The
impact of heterogeneous bandwidth constraints on DHT-based multicast pro-
tocols. Proc. of IPTPS, 2005.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

Dejan Kosti C, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh, Sep 2003.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: high-bandwidth multicast
in cooperative environments. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 298-313, New York, NY,
USA, 2003. ACM Press.

J. Chakareski, S. Han, and B. Girod. Layered coding vs. multiple descriptions
for video streaming over multiple paths. In MULTIMEDIA ’03: Proceedings of
the eleventh ACM international conference on Multimedia, pages 422-431, New
York, NY, USA, 2003. ACM.

Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
a distributed anonymous information storage and retrieval system. In Inter-

national workshop on Designing privacy enhancing technologies, pages 46—66,
New York, NY, USA, 2001. Springer-Verlag New York, Inc.

83

84

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

[23]

BIBLIOGRAPHY

Bram Cohen. Incentives build robustness in bittorrent, 2003.

"Cumulative Distribution Function". Accessed Jan-2008, Available: hittp :
//en.wikipedia.org/wiki/cumulativegistribution punction.

F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common api for
structured peer-to-peer overlays, 2003.

"DHTSim". Accessed May-2006, Not available: http
/Jwww.in formatics.sussex.ac.uk /users/ianw /teach/dist — sys.

Kolja Eger, Tobias Hobfeld, Andreas Binzenhofer, and Gerald Kunzmann. Ef-
ficient simulation of large-scale p2p networks: packet-level vs. flow-level simu-
lations. In UPGRADE °07: Proceedings of the second workshop on Use of P2P,
GRID and agents for the development of content networks, pages 9-16, New
York, NY, USA, 2007. ACM Press.

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Peer-to-
peer membership management for gossip-based protocols. IEEE Trans. Com-
put., 52(2):139-149, 2003.

Pedro GarciAa, Carles Pairot, Ruben Mondejar, Jordi Pujol, Helio Tejedor,
and Robert Rallo. PlanetSim: A New QOuverlay Network Simulation Framework.
2005.

Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden,
October 2006.

Vivek K. Goyal. Multiple description coding: Compression meets the network.
IEEFE Signal Processing Magazine, 18(5):74-93, September 2001.

Yang Guo, Kyoungwon Suh, Jim Kurose, and Don Towsley. Directstream: A
directory-based peer-to-peer video streaming service, 2006.

Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van
Renesse. Kelips: Building an efficient and stable P2P DHT through increased
memory and background overhead. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03), 2003.

M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botev. Collectcast: A
peer-to-peer service for media streaming, 2003.

X. Hei, C. Liang, J. Liang, Y. Liu, and KW Ross. Insights into pplive: A
measurement study of a large-scale p2p iptv system. Proc. of IPTV Workshop,
International World Wide Web Conference, 2006.

Xuxian Jiang, Yu Dong, Dongyan Xu, and Bharat Bhargava. Gnustream: A
p2p media streaming system prototype, 2003.

[24]

[25]

85

M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal
distributed hash table. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS 03), 2003.

Cameron Kiddle, Rob Simmonds, Carey Williamson, and Brian Unger. Hybrid
packet/fluid flow network simulation. In PADS ’03: Proceedings of the seven-
teenth workshop on Parallel and distributed simulation, page 143, Washington,
DC, USA, 2003. IEEE Computer Society.

D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat. Using random
subsets to build scalable network services. In Proceedings of USITS, 2003.

Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek.
Bandwidth-efficient management of DHT routing tables. In Proceedings of the
2nd USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’05), Boston, Massachusetts, May 2005.

B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong. Fluid simulation of large
scale network: Issues and tradeoffs TITLE2:. Technical Report UM-CS-1999-
038, , 1999.

Benyuan Liu, Daniel R. Figueiredo, Yang Guo, James F. Kurose, and Donald F.
Towsley. A study of networks simulation efficiency: Fluid simulation vs. packet-
level simulation. In INFOCOM, pages 1244-1253, 2001.

Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer. Push-
to-Pull Peer-to-Peer Live Streaming. In 21st International Symposium on Dis-
tributed Computing (DISC), Lemesos, Cyprus, Springer LNCS 4731, September
2007.

Nazanin Magharei and Reza Rejaie. Prime: Peer-to-peer receiver-driven mesh-
based streaming. In INFOCOM, pages 1415-1423, 2007.

G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a
small world, 2003.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric, 2002.

J. J. D. Mol, D. H. J. Epema, and H. J. Sips. The orchard algorithm: P2p
multicasting without free-riding. In P2P ’06: Proceedings of the Sixth IEEE
International Conference on Peer-to-Peer Computing, pages 275-282, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A Survey of Peer-to-
Peer Network Simulators. In Proceedings of The Seventh Annual Postgraduate
Symposium, Liverpool, UK, 2006.

86

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers. The state of peer-to-peer simulators and simulations. SIGCOMM
Comput. Commun. Rev., 37(2):95-98, April 2007.

Animesh Nandi, Aditya Ganjam, Peter Druschel, T. S. Eugene Ng, Ion Stoica,
Hui Zhang, and Bobby Bhattacharjee. Saar: A shared control plane for overlay
multicast. In NSDI. USENIX, 2007.

"Narses Network Simulator". Accessed Jan-2008, Available: http
//sourceforge.net/projects/narses.

"NeuroGrid". Accessed Jan-2008, Available: http : //www.neurogrid.net.

"Overlay Weaver: An Overlay Construction Toolkit". Accessed Jan-2008, Avail-
able: http : //overlayweaver.source forge.net.

"P2Psim: A Simulator for Peer-to-Peer (P2P) Protocols". Accessed Jan-2008,
Available: http : //pdos.csail.mit.edu/p2psim.

Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, and Kunwadee
Sripanidkulchai. Distributing streaming media content using cooperative net-
working. In NOSSDAV ’02: Proceedings of the 12th international workshop

on Network and operating systems support for digital audio and video, pages
177-186, New York, NY, USA, 2002. ACM.

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr. Chainsaw:
Eliminating trees from overlay multicast, 2005.

"Pareto Distribution". Accessed Jan-2008, Available: http
//en.wikipedia.org/wiki/ Paretogistribution.

"PeerSim: P2P Simulator". Accessed Jan-2008, Available: http
//peersim.source forge.net.

Fabio Pianese, Joaquin Keller, and Ernst W Biersack. PULSE, a flexible P2P
live streaming system. In 9th IEEE Global Internet Symposium 2006 in con-
junction with IEEE Infocom 2006, 28-29 April 2006, Barcelona, Spain, Apr
2006.

"PlanetSim: An Overlay Network Simulation Framework". Accessed Jan-2008,
Available: http : //planet.urv.es/planetsim.

"PPLive". Accessed Jan-2008, Available: http : //www.pplive.com.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329-77, 2001.

[50]

[54]

[53]

[56]

[59]

[60]

87

Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. Scribe: The design of a large-scale event notification infrastructure.
In NGC °01: Proceedings of the Third International COST264 Workshop on
Networked Group Communication, pages 30-43, London, UK, 2001. Springer-
Verlag.

Mario T. Schlosser, Tyson E. Condie, and Sepandar D. Kamvar. Simulating a
p2p file-sharing network, 2002.

Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large net-
works. In Second Annual ACM Internet Measurement Workshop, November
2002.

K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility of
supporting large-scale live streaming applications with dynamic application
end-points. Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 107-120, 2004.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM Conference, pages 149-160, 2001.

S. Tewari and L. Kleinrock. Analytical model for bittorrent- based live
video streaming. In 3rd IEEE Internalional Workshop on Nelworking Issues
(NIME’07), Las Vegas, NV, January 2007.

"The Annotated Gnutella Protocol Specification v0.4".

Accessed Jan-2008, Available: hitp : //rfc —
gnutella.source forge.net/developer /stable /index.html.

D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme for media
streaming, 2003.

Eveline Veloso, Virgilio Almeida, Wagner Meira, Azer Bestavros, and Shudong
Jin. A hierarchical characterization of a live streaming media workload. In
IMW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet mea-
surment, pages 117-130, New York, NY, USA, 2002. ACM.

Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.
Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer mul-
ticast. In ICNP ’06: Proceedings of the Proceedings of the 2006 IEEE
International Conference on Network Protocols, pages 2-11, Washington, DC,
USA, 2006. IEEE Computer Society.

Vivek Vishnumurthy and Paul Francis. On heterogeneous overlay construction
and random node selection in unstructured p2p networks. In INFOCOM, 2006.

88

[61]

[65]

[66]

BIBLIOGRAPHY

L. Vu, I. Gupta, J. Liang, and K. Nahrstedt. Mapping the pplive network:
Studying the impacts of media streaming on p2p overlays. Department of
Computer Science, Uniwversity of Illinois at Urbana-Champaign, Tech. Rep.
UIUCDCS-R-2006-275, Aug, 2006.

Long Vu, Indranil Gupta, Jin Liang, and Klara Nahrstedt. Insights into PPLive:
A Measurement Study of a Large-Scale P2P IPTV System. Technical report,
2005.

Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. In Operating Systems Design and
Implementation, pages 1-11, 1994.

Feng Wang, Yonggiang Xiong, and Jiangchuan Liu. mtreebone: A hybrid
tree/mesh overlay for application-layer live video multicast. In ICDCS ’07:
Proceedings of the 27th International Conference on Distributed Computing Sys-
tems, page 49, Washington, DC, USA, 2007. IEEE Computer Society.

S. Xie, G.Y. Keung, and B. Li. A Measurement of a large-scale Peer-to-Peer
Live Video Streaming System. Parallel Processing Workshops, 2007. ICPPW
2007. International Conference on, pages b7-57, 2007.

Weishuai Yang and Nael Abu-Ghazaleh. Gps: A general peer-to-peer simulator
and its use for modeling bittorrent. In MASCOTS ’05: Proceedings of the
18th IEEFE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 425-434, Washington, DC,
USA, 2005. IEEE Computer Society.

W. P. Ken Yiu, Xing Jin, and S. H. Gary Chan. Challenges and approaches in
large-scale p2p media streaming. IEEE MultiMedia, 14(2):50-59, 2007.

Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum. Coolstream-
ing/donet: A data-driven overlay network for peer-to-peer live media streaming,
2005.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, April 2001.

Index

Any Stripe policy, 62
Application Level Multicast, 1, 19

Bandwidth matrix, 50
Bandwidth utilization, 31, 57, 68
BFS policy, 60

BFS-DFS policy, 60

Bloom Filter, 27

Buffering delay, 37, 66

Bulk Tree, 9

Bullet, 26

Centralized method, 8, 12
Chainsaw, 22

Chunk driven, 14, 21, 22, 24
ChunkySpread, 20

CollectCast, 14

Controlled flooding method, 11, 12
CoolStreaming, 11, 14, 21
CoopNet, 8

Description, see stripe

DHT based method, 9, 12

DHTSim, 53

DirectStream, 8, 17

Discrete event simulation, 47

Disruption, 57, 73, 76
severity, 76

Distinct parent, 62

Distinct Parent policy, 62

Distinct parents, 35

89

FEL, 47, 51

Flow level simulation, 47

Fluid based simulation, see flow level
simulation

ForestCast, 2, 31, 32

Free rider, 58, 60

Future Event List, see FEL

GnuStream, 11, 14, 23
Guutella, 11, 23

Gossip based method, 11, 12
GPS, 54

Head of buffer, 32
Head-Segment policy, 64
Hierarchical method, 9, 12
High churn, 59

High rate departure, 59

IPTV, 24

Join only, 59

Lottery event, 59
Low churn, 59
Low rate departure, 59

MDC, 13
Media point, 32

INDEX

Media streaming, 1 Resource index, 58
Mid-Segment policy, 64 Ripple effect, 48
mTreeBone, 26

Multiple Description Coding, see MDCS

SAAR, 27
SCAM, 21
Narses, 54 SCAMP, 26
Neurogrid, 54 Scribe, 17, 18, 27
Nice, 9 SICSSIM-B, 2, 3, 49, 57
Node strength, 40 Slow-start congestion control, 51
Non-Distinct Parents policy, 62 SplitStream, 10, 13, 18
Normal distribution, 59 Startup delay, 31, 57, 69

Startup segment, 32, 36, 64
Stripe, 13, 32

Open node, 33 SwapLinks, 20

Orchard, 19

Overlay Weaver, 53 T
Tail of buffer, 32

Time to join, 57

P2PSim, 53 Tree depth, 57, 68, 77
Packet level simulation, 47

Pastry, 17, 18, 27 U

Peer profile, 33 Uniform distribution, 59
PeerSim, 53

PlanetSim, 53

Playback latency, 31, 33, 57, 71
Playback point, 32
Poisson distribution, 59
PPLive, 24

Prime, 15, 25

Priority function, 35

Pull method, 12, 14
Pulsar, 10, 15, 24
PULSE, 11, 14, 22

Push method, 12, 13
Push-Pull method, 12, 15

ZigZag, 9, 16

Quality, 31, 57, 63, 73
Query-Cycle, 54

RanSub Protocol, 26
Rarest Stripe policy, 62
Receiver driven, 14, 23

